
Infinitary cut-elimination via finite approximations1

Matteo Acclavio #Ñ2

University of Southern Denmark, Denmark3

Gianluca Curzi #4

University of Birmingham, UK5

Giulio Guerrieri #Ñ6

Aix Marseille Université, CNRS, LIS UMR 7020, Marseille, France7

Abstract8

We investigate non-wellfounded proof systems based on parsimonious logic, a weaker variant of linear9

logic where the exponential modality ! is interpreted as a constructor for streams over finite data.10

Logical consistency is maintained at a global level by adapting a standard progressing criterion. We11

present an infinitary version of cut-elimination based on finite approximations, and we prove that,12

in presence of the progressing criterion, it returns well-defined non-wellfounded proofs at its limit.13

Furthermore, we show that cut-elimination preserves the progressive criterion and various regularity14

conditions internalizing degrees of proof-theoretical uniformity. Finally, we provide a denotational15

semantics for our systems based on the relational model.16

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation17

→ Proof theory18

Keywords and phrases cut-elimination, non-wellfounded proofs, parsimonious logic, linear logic,19

proof theory, approximation, sequent calculus, non-uniform proofs20

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2321

1 Introduction22

Non-wellfounded proof theory studies proofs as possibly infinite (but finitely branching) trees,23

where logical consistency is maintained via global conditions called progressing (or validity)24

criteria. In this setting, the so-called regular (also called circular) proofs receive a special25

attention, as they admit a finite description in terms of (possibly cyclic) directed graphs.26

This area of proof theory makes its first appearance (in its modern guise) in the modal27

µ-calculus [25, 11]. Since then, it has been extensively investigated from many perspectives28

(see, e.g., [5, 30, 10, 19]), establishing itself as an ideal setting for manipulating least and29

greatest fixed points, and hence for modeling induction and coinduction principles.30

Non-wellfounded proof theory has been applied to constructive fixed point logics i.e.,31

with a computational interpretation based on the Curry-Howard correspondence [31]. A key32

example can be found in the context of linear logic (LL) [17], a logic implementing a finer33

control on resources thanks to the exponential modalities ! and ?. In this framework, the34

most extensively studied fixed point logic is µMALL, defined as the exponential-free fragment35

of LL with least and greatest fixed point operators (respectively, µ and its dual ν) [4, 3].36

In [4] Baelde and Miller have shown that the exponentials can be recovered in µMALL37

by exploiting the fixed points operators, i.e., by defining !A := νX.(1 & A & (X ⊗ X)) and38

?A := µX.(⊥ ⊕ A ⊕ (X ` X)). As these authors notice, the fixed point-based definition of !39

and ? can be regarded as a more permissive variant of the standard exponentials, since a40

proof of νX.(1 & A & (X ⊗ X)) could be constructed using different proofs of A, whereas in41

LL a proof of !A is constructed uniformly using a single proof of A. This proof-theoretical42

notion of non-uniformity is indeed a central feature of the fixed-point exponentials.43

However, the above encoding is not free from issues. First, as discussed in full detail44

in [13], the encoding of the exponentials does not verify the Seely isomorphisms, syntactically45

© Acclavio, Curzi, Guerrieri;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:
matteoacclavio.com
 https://orcid.org/0000-0002-0425-2825
mailto:
mailto: giulio.guerrieri@lis-lab.fr
https://pageperso.lis-lab.fr/~giulio.guerrieri/
 https://orcid.org/0000-0002-0469-4279
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Infinitary cut-elimination via finite approximations

expressed by the equivalence !(A & B) ˛ (!A ⊗ !B), an essential property for modeling46

exponentials in LL. Specifically, the fixed-point definition of ! relies on the multiplicative47

connective ⊗, which forces an interpretation of !A based on lists rather than multisets.48

Secondly, as pointed out in [4], there is a neat mismatch between cut-elimination for the49

exponentials of LL and the one for the fixed point exponentials of µMALL. While the first50

problem is related to syntactic deficiencies of the encoding, and does not undermine further51

investigations on fixed point-based definitions of the exponential modalities, the second one52

is more critical. These apparent differences between the two exponentials contribute to53

stressing an important aspect in linear logic modalities, i.e., their non-canonicity [27, 9]1.54

On a parallel research thread, Mazza [22, 23] studied parsimonious logic, a variant of55

linear logic where the exponential modality ! satisfies Milner’s law (i.e., !A ˛ A ⊗ !A)56

and invalidates the implications !A ⊸ !!A (digging) and !A ⊸ !A ⊗ !A (contraction). In57

parsimonious logic, a proofs of !A can be interpreted as a stream over (a finite set of) proofs58

of A, i.e., as a greatest fixed point, where the linear implications A ⊗ !A⊸ !A (co-absorption)59

and !A⊸ A ⊗ !A (absorption) can be computationally read as the push and pop operations60

on streams. More specifically, a formula !A is introduced by an infinitely branching rule61

that takes a finite set of proofs D1, . . . , Dn of A and a (possibly non-recursive) function62

f : N → {1, . . . , n} as premises, and constructs a proof of !A representing a stream of proofs of63

the form S = (Df(0), Df(1), . . . , Df(n), . . .). Hence, parsimonious logic exponential modalities64

exploit in an essential way the above-mentioned proof-theoretical non-uniformity, which in65

turn deeply interfaces with notions of non-uniformity from computational complexity [23].66

The analysis of parsimonious logic conducted in [22, 23] reveals that fixed point definitions67

of the exponentials are better behaving when digging and contraction are discarded. On the68

other hand, the co-absorption rule cannot be derived in LL, and so it prevents parsimonious69

logic becoming a genuine subsystem of the latter. This led the authors of the present paper70

to introduce parsimonious linear logic, a co-absorption-free subsystem of linear logic that71

nonetheless allows a stream-based interpretation of the exponentials.72

We present two finitary proof systems for parsimonious linear logic: the system nuPLL,73

supporting non-uniform exponentials, and PLL, a fully uniform version. We investigate74

non-wellfounded counterparts of nuPLL and PLL, adapting to our setting the progressing75

criterion to maintain logical consistency. To recover the proof-theoretical behavior of nuPLL76

and PLL, we identify further global conditions on non-wellfounded proofs, that is, some forms77

of regularity to capture the notions of uniformity and non-uniformity. This leads us to two78

main non-wellfounded proof systems: regular parsimonious linear logic (rPLL∞), defined via79

the regularity condition and corresponding to PLL, and non-uniform parsimonious linear80

logic (wrPLL∞), defined via a weak regularity condition and corresponding to nuPLL.81

The major contribution of this paper is the study of continuous cut-elimination in the82

setting of non-wellfounded parsimonious linear logic. We first introduce Scott-domains of83

partially defined non-wellfounded proofs, ordered by an approximation relation. Then, we84

define special infinitary proof rewriting strategies called maximal and continuous infinitary85

cut-elimination strategies (mc-ices) which compute (Scott-)continuous functions. Productivity86

in this framework is established by showing that, in presence of the progressing condition, these87

continuous functions return totally defined cut-free non-wellfounded proofs (Theorem 32.1).88

Moreover, we prove that they also preserve the (weak) progressing, the finite expandability,89

and the (weak) regularity conditions (Items 2–4 in Theorem 32).90

1 It is possible to construct linear logic proof systems with alternative (non equivalent) exponential
modalities (see, e.g., [24]).

M. Acclavio, G. Curzi and G. Guerrieri 23:3

On a technical side, we stress that our methods and results distinguish from previous91

approaches to cut-elimination in a non-wellfounded setting in many respects. First, we get92

rid of many technical notions typically introduced to prove infinitary cut-elimination, such as93

the multicut rule or the fairness conditions (as in, e.g., [15, 3]), as these notions are subsumed94

by an approximation-by-approximation approach to cut-elimination. Furthermore, we prove95

productivity of cut-elimination and preservation of progressiveness in a more direct and96

constructive way, i.e., without going through auxiliary proof systems and avoiding arguments97

by contradiction (see, e.g., [3]). Finally, we prove for the first time preservation of regularity98

properties under continuous cut-elimination, essentially exploiting methods for compressing99

transfinite rewriting sequences to ω-long ones from [32, 29].100

Finally, we define a denotational semantics for non-wellfounded parsimonious logic based101

on the relational model, with a standard multiset-based interpretation of the exponentials,102

and we show that this semantics is preserved under continuous cut-elimination (Theorem 37).103

We also prove that extending non-wellfounded parsimonious linear logic with digging prevents104

the existence of a cut-elimination result preserving the semantics (Theorem 39). Therefore,105

the impossibility of a stream-based definition of ! that validates digging (and contraction).106

For lack of space, proofs are in the appendix if omitted or sketched in the body of the paper.107

2 Preliminary notions108

In this section we recall some basic notions from (non-wellfounded) proof theory, fixing the109

notation that will be adopted in this paper.110

2.1 Derivations and coderivations111

We assume that the reader is familiar with the syntax of sequent calculus, e.g. [33]. Here we112

specify some conventions adopted to simplify the content of this paper.113

In this work we consider (sequent) rules of the form r
Γ

or
Γ1

r
Γ

or
Γ1 Γ2

r
Γ

, and we refer114

to the sequents Γ1 and Γ2 as the premises, and to the sequent Γ as the conclusion of the rule115

r. To avoid technicalities of the sequents-as-lists presentation, we follow [3] and we consider116

sequents as sets of occurrences of formulas from a given set of formulas. In particular, when117

we refer to a formula in a sequent we always consider a specific occurrence of it.118

▶Definition 1. A (binary, possibly infinite) tree T is a subset of words in {1, 2}∗ that contains119

the empty word ϵ (the root of T) and is ordered-prefix-closed (i.e., if n ∈ {1, 2} and vn ∈ T ,120

then v ∈ T , and if moreover v2 ∈ T , then v1 ∈ T). Elements of a tree T are called nodes121

and a node vn ∈ T with n ∈ {1, 2} is a child of v ∈ T . Given a tree T and a node v ∈ T , a122

branch B of T (from v) is a set of nodes in T of the form vw (for any w ∈ {1, 2}∗) such123

that if they have at least one child in T then they have exactly one child in B.124

A coderivation over a set of rules S is a labeling D of a tree by sequents such that if v125

is a node with children v1, . . . , vn (with n ∈ {0, 1, 2}), then there is an occurrence of a rule126

r in S with conclusion the sequent D(v) and premises the sequents D(v1), . . . , D(vn). The127

height of r in D is the length of the node v ∈ {1, 2}∗ such that D(v) is the conclusion of r.128

The conclusion of D is the sequent D(ϵ). If v is a node of the tree, the sub-coderivation129

of D rooted at v is the coderivation Dv defined by Dv(w) = D(vw).130

A coderivation D is r-free (for a rule r∈S) if it contains no occurrence of r. It is regular131

if it has finitely many distinct sub-coderivations; it is non-wellfounded if it labels an infinite132

tree, and it is a derivation (with size |D| ∈ N) if it labels a finite tree (with |D| nodes).133

CVIT 2016

23:4 Infinitary cut-elimination via finite approximations

ax
A, A⊥

Γ, A A⊥, ∆
cut

Γ, ∆
Γ, A, B`

Γ, A ` B

Γ, A B, ∆
⊗

Γ, ∆, A ⊗ B
1

1
Γ

⊥
Γ, ⊥

Γ, A
f!p

?Γ, !A
Γ

?w
Γ, ?A

Γ, A, ?A
?b

Γ, ?A

Figure 1 Sequent calculus rules of PLL.

0 1 Dabs Dder

ax
X⊥, X

?w
?(X ⊗ X⊥), X⊥, X`

?(X ⊗ X⊥), X⊥ ` X`
?(X ⊗ X⊥) ` X⊥ ` X

ax
X⊥, X

ax
X⊥, X

⊗
X ⊗ X⊥, X⊥, X

?w
?(X ⊗ X⊥), X ⊗ X⊥, X⊥, X

?b
?(X ⊗ X⊥), X⊥, X`×2

?(X ⊗ X⊥) ` X⊥ ` X

ax
A⊥, A

ax
?A⊥, !A

⊗
A⊥, ?A⊥, A ⊗ !A

?b
?A⊥, A ⊗ !A`

?A⊥ ` (A ⊗ !A)

ax
A⊥, A

?w
A⊥, ?A⊥, A

?b
?A⊥, A`

?A⊥ ` A

Figure 2 Examples of derivations in PLL.

Given a set of coderivations X, a sequent Γ is provable in X (noted ⊢X Γ) if there is a134

coderivation in X with conclusion Γ.135

While derivations are usually represented as finite trees, regular coderivations can be136

represented as finite directed (possibly cyclic) graphs: a cycle is created by linking the roots137

of two identical subcoderivations.138

▶ Definition 2 (Bar). Let D be a coderivation. A set V of nodes in D is a bar (of D) if:139

any infinite branch of D contains a node in V;140

any pair of nodes in V are mutually incomparable (w.r.t. the partial order in D).141

We say that a bar V has height h if every node in V that is not a leaf of D has height ≥ h.142

3 Parsimonious Linear Logic143

In this paper we consider the set of formulas for propositional multiplicative-exponential
linear logic with units (MELL). These are generated by a countable set of propositional
variables A = {X, Y, . . .} using the following grammar:

A, B ::= X | X⊥ | A ⊗ B | A ` B | !A | ?A | 1 | ⊥

A !-formula (resp. ?-formula) is a formula of the form !A (resp. ?A). Linear negation144

(·)⊥ is defined by De Morgan’s laws (A⊥)⊥ = A , (A ⊗ B)⊥ = A⊥ `B⊥ , (!A)⊥ = ?A⊥ , and145

(1)⊥ = ⊥ while linear implication is defined as A⊸ B := A⊥ ` B.146

▶ Definition 3. Parsimonious linear logic, denoted by PLL, is the set of rules in Figure 1,147

that is, axiom (ax), cut (cut), tensor (⊗), par (`), one (1), bottom (⊥), functorial148

promotion (f!p), weakening (?w), absorption (?b). Rules ax, ⊗, `, 1 and ⊥ are called149

multiplicative, while rules f!p, ?w and ?b are called exponential. We also denote by PLL150

the set of derivations over the rules in PLL.151

▶ Example 4. Figure 2 gives some examples of derivation in PLL. The (distinct) derivations152

0 and 1 prove the same formula N := !(X ⊸ X)⊸ X ⊸ X. The derivation Dabs proves153

the absorption law !A⊸ A ⊗ !A; the derivation Dder proves the dereliction law !A⊸ A.154

The cut-elimination relation →cut in PLL is the union of principal cut-elimination steps155

in Figure 3 (multiplicative) and Figure 4 (exponential) and commutative cut-elimination156

steps in Figure 5. The reflexive-transitive closure of →cut is noted →∗
cut.157

M. Acclavio, G. Curzi and G. Guerrieri 23:5

ax
A, A⊥ Γ, A

cut
Γ, A

→cut Γ, A

Γ, A, B`
Γ, A ` B

∆, A⊥ B⊥, Σ
⊗

∆, A⊥ ⊗ B⊥, Σ
cut

Γ, ∆, Σ
→cut

Γ, B, A A⊥, ∆
cut

Γ, ∆, B B⊥, Σ
cut

Γ, ∆, Σ

Γ
⊥

Γ, ⊥
1

1
cut

Γ
→cut Γ

Figure 3 Multiplicative cut-elimination steps in PLL.

Γ, A
f!p

?Γ, !A
A⊥, ∆, B

f!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
f!p

?Γ, ?∆, !B

Γ, A
f!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

?w
?Γ, ∆

Γ, A
f!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut Γ, A

Γ, A
f!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
?b

?Γ, ∆

Figure 4 Exponential cut-elimination steps in PLL.

▶ Theorem 5. For every D ∈ PLL, there is a cut-free D′ ∈ PLL such that D →∗
cut D′.158

Sketch of proof. We associate with any derivation D in PLL a derivation D♠ in MELL159

sequent calculus. Thanks to additional commutative cut-elimination steps, we prove that cut-160

elimination in MELL rewrites D♠ to the translation of a derivation in PLL. The termination161

of cut-elimination in PLL follows from the result in MELL [26]. Details are in Appendix A. ◀162

Akin to light linear logic [18, 20, 28], the exponential rules of PLL are weaker than those163

in MELL: the usual promotion rule is replaced by f!p (functorial promotion), and the usual164

contraction and dereliction rules by ?b. As a consequence, the digging formula !A ⊸ !!A165

and the contraction formula !A⊸ !A ⊗ !A are not provable in PLL (unlike the dereliction166

formula, Example 4). This allows us to interpret computationally these weaker exponentials167

in terms of streams, as well as to control the complexity of cut-elimination [22, 23].168

It is easy to show that MELL = PLL + digging: if we add the digging formula as an axiom169

(or equivalently, the digging rule ??d in Figure 12) to the set of rules in Figure 1, then the170

contraction formula becomes provable, and the obtained proof system coincides with MELL.171

4 Non-wellfounded Parsimonious Linear Logic172

In linear logic, a formula !A is interpreted as the availability of A at will. This intuition still173

holds in PLL. Indeed, the Curry-Howard correspondence interprets rule f!p introducing the174

modality ! as an operator taking a derivation D of A and creating a (infinite) stream (D, D, . . . ,175

D, . . .) of copies of the proof D. Each element of the stream is accessed via the cut-elimination176

step f!p vs ?b in Figure 4: rule ?b is interpreted as an operator popping one copy of D out177

of the stream. Pushing these ideas further, Mazza [22] introduced parsimonious logic PL, a178

type system (comprising rules f!p and ?b) characterizing the logspace decidable problems.179

Mazza and Terui then introduced in [23] another type system, nuPL∀ℓ, based on parsi-180

monious logic and capturing the complexity class P/poly (i.e., the problems decidable by181

polynomial size families of boolean circuits [2]). Their system is endowed with a non-uniform182

version of the functorial promotion, which takes a finite set of proofs D1, . . . , Dn of A and a183

(possibly non-recursive) function f : N → {1, . . . , n} as premises, and constructs a proof of !A184

modeling the stream (Df(0), Df(1), . . . , Df(n), . . .). This typing rule is the key tool to encode185

the so-called advices for Turing machines, an essential step to show completeness for P/poly.186

CVIT 2016

23:6 Infinitary cut-elimination via finite approximations

Γ1, A
r

Γ, A A⊥, ∆
cut

Γ, ∆
→cut

Γ1, A A⊥, ∆
cut

Γ1, ∆
r

Γ, ∆

Γ1, A Γ2
r

Γ, A ∆, A⊥
cut

Γ, ∆
→cut

Γ1, A A⊥, ∆
cut

Γ1, ∆ Γ2
r

Γ, ∆

Figure 5 Commutative cut-elimination steps in PLL, where r ̸= cut.

In a similar vein, we can endow PLL with a non-uniform version of f!p called infinitely187

branching promotion (ib!p), which constructs a stream (D0, D1, . . . , Dn, . . .) with finite188

support, i.e., made of finitely many distinct derivations (of the same conclusion):2189

D0

Γ, A

D1

Γ, A · · ·
Dn

Γ, A · · ·
ib!p {Di | i ∈ N} is finite

?Γ, !A
!w

!A
Γ, A ∆, !A

!b
Γ, ∆, !A (1)190

The side condition on ib!p provides a proof theoretic counterpart to the function f : N →191

{1, . . . , n} in nuPL∀ℓ. Clearly, f!p is subsumed by the rule ib!p, as it corresponds to the192

special (uniform) case where Di = Di+1 for all i ∈ N.193

▶ Definition 6. We define the set of rules nuPLL := {ax, ⊗,`, 1, ⊥, cut, ?b, ?w, ib!p}. We194

also denote by nuPLL the set of derivations over the rules in nuPLL.3195

There are some notable differences between nuPLL and Mazza and Terui’s original system196

nuPL∀ℓ [23]. As opposed to nuPLL, nuPL∀ℓ is formulated as an intuitionistic (type) system.197

Furthermore, to achieve completeness for P/poly, these authors introduced second-order198

quantifiers and the co-absorption (!b) and co-weakening (!w) rules displayed in (1).199

Cut-elimination steps for nuPLL are in Figures 3, 5, and 16 (Figure 16 is in Appendix A200

because we do not use it: it just adapts the exponential steps to ib!p). In particular, the step201

ib!p-vs-?b in Figure 16 pops the first premise D0 of ib!p out of the stream (D0, D1, . . . , Dn, . . .).202

4.1 From infinitely branching proofs to non-wellfounded proofs203

In this paper we explore a dual approach to the one of nuPL∀ℓ (and nuPLL): instead of204

considering (wellfounded) derivations with infinite branching, we consider (non-wellfounded)205

coderivations with finite branching. For this purpose, the infinitary rule ib!p of nuPLL is206

replaced by the binary rule below, called conditional promotion (c!p):207

Γ, A ?Γ, !A
c!p

?Γ, !A
(2)208

▶ Definition 7. We define the set of rules PLL∞ := {ax, ⊗,`, 1, ⊥, cut, ?b, ?w, c!p}. We also209

denote by PLL∞ the set of coderivations over the rules in PLL∞.210

In other words, PLL∞ is the set of coderivations generated by the same rules as PLL,211

except that f!p is replaced by c!p. From now on, we will only consider coderivations in PLL∞.212

2 Rule ib!p is reminiscent of the ω-rule used in (first-order) Peano arithmetic to derive formulas of the
form ∀xϕ that cannot be proven in a uniform way.

3 To be rigorous, this requires a slight change in Definition 1: the tree labeled by a derivation in nuPLL
must be over Nω instead of {1, 2}∗, in order to deal with infinitely branching derivations.

M. Acclavio, G. Curzi and G. Guerrieri 23:7

D := ax
A⊥, A

ax
A⊥, A

...
cut

Γ, A
cut

Γ, A
cut

Γ, A

D? :=

...
?b

A, A, ?A
?b

A, ?A
?b

?A

Figure 6 Two non-wellfounded and non-progressing coderivations in PLL∞.

 D

Γ′
r

Γ


◦

:=
D◦

Γ′
r

Γ

 D1

Γ1

D2

Γ2
t

Γ


◦

:=
D1

◦

Γ1

D2
◦

Γ2
t

Γ

 D

Γ, A
f!p

?Γ, !A


◦

:= D◦

Γ, A

D◦

Γ, A

...
c!p

?Γ, !A
c!p

?Γ, !A
c!p

?Γ, !A

 D

Γ′
r

Γ


•

:=
D•

Γ′
r

Γ

 D1

Γ1

D2

Γ2
t

Γ


•

:=
D1

•

Γ1

D2
•

Γ2
t

Γ

 D0

Γ, A · · ·
Dn

Γ, A · · ·
ib!p

?Γ, !A


•

:= D•
0

Γ, A

D•
n

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
for all r ∈ {`, ⊥, ?w, ?b} and t ∈ {cut, ⊗} (ax and 1 are translated by themselves).

Figure 7 Translations (·)◦ from PLL to PLL∞, and (·)• from nuPLL to PLL∞.

▶ Example 8. Figure 6 shows two non-wellfounded coderivations in PLL∞: D (resp. D?)213

has an infinite branch of cut (resp. ?b) rules, and is (resp. is not) regular.214

We can embed PLL and nuPLL into PLL∞ via the conclusion-preserving translations215

(·)◦ : PLL → PLL∞ and (·)• : nuPLL → PLL∞ defined in Figure 7 by induction on derivations:216

they map all rules to themselves except f!p and ib!p, which are “unpacked” into non-217

wellfounded coderivations that iterate infinitely many times the rule c!p.218

An infinite chain of c!p rules (Figure 8) is a structure of interest in itself in PLL∞.219

▶ Definition 9. A non-wellfounded box (nwb for short) is a coderivation D with an220

infinite branch {ϵ, 2, 22, . . . } (the main branch of D) all labeled by c!p rules as in Figure 8,221

where !A in the conclusion is the principal formula of D, and D0, D1, . . . are the calls of222

D. We denote D by c!p(D0,...,Dn,...).223

Let S = c!p(D0,...,Dn,...) be a nwb. We may write S(i) to denote Di. We say that S224

has finite support (resp. is periodic with period k) if {S(i) | i ∈ N} is finite (resp. if225

S(i) = S(k + i) for any i ∈ N). A coderivation D has finite support (resp. is periodic) if226

any nwb in D has finite support (resp. is periodic).227

▶ Example 10. Consider the following nwb of the formula !N, where N := !(X ⊸ X)⊸228

X ⊸ X has at two distinct derivations 0 and 1 (Example 4), and ij ∈ {0, 1} for all j ∈ N.229

c!p(i0,...,in,...) =
i0

N

i1

N

in

N

...
c!p

!N
c!p

...
c!p

!N
c!p

!N

(3)230

Thus c!p(i0,...,in,...) has finite support, as its only calls can be 0 or 1, and it is periodic if and231

only if so is the infinite sequence (i0, . . . , in, . . .) ∈ {0, 1}ω.232

CVIT 2016

23:8 Infinitary cut-elimination via finite approximations

D = c!p(D0,...,Dn,...) =
D0

Γ, A

D1

Γ, A

Dn

Γ, A

...
c!p

?Γ, !A
c!p

...
c!p

?Γ, !A
c!p

?Γ, !A

Figure 8 A non-wellfounded box in PLL∞.

Γ, A ?Γ, !A
c!p

?Γ, !A
A⊥, ∆, B ?A⊥, ?∆, !B

c!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B

?Γ, !A ?A⊥, ?∆, !B
cut

?Γ, ?∆, !B
c!p

?Γ, ?∆, !B

Γ, A ?Γ, !A
c!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

?w
?Γ, ∆

Γ, A ?Γ, !A
c!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut
Γ, A

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
?b

?Γ, ∆

Figure 9 Exponential cut-elimination steps for coderivations of PLL∞.

The cut-elimination steps →cut for PLL∞ are in Figures 3, 5, and 9. Computationally,233

they allow the c!p rule to be interpreted as a coinductive definition of a stream of type !A234

from a stream of the same type to which an element of type A is prepended. In particular, the235

cut-elimination step c!p vs ?b accesses the head of a stream: rule ?b acts as a popping operator.236

As a consequence, the nwb in Figure 8 constructs a stream (D0, D1, . . . , Dn, . . .) similarly237

to ib!p but, unlike the latter, all the Di’s may be pairwise distinct. The reader expert in linear238

logic can see a nwb as a box with possibly infinitely many distinct contents (its calls), while239

usual linear logic boxes (and f!p in PLL) provide infinitely many copies of the same content.240

Rules f!p in PLL and ib!p in nuPLL are mapped by (·)◦ and (·)• into nwbs, which are241

non-wellfounded coderivations. Hence, the cut-elimination steps f!p vs f!p in PLL and ib!p vs242

ib!p in nuPLL can only be simulated by infinitely many cut-elimination steps in PLL∞.243

Note that D ∈ PLL∞ in Figure 6 is not cut-free, and if D →cut D then D = D : thus D 244

cannot reduce to a cut-free coderivation, and so the cut-elimination theorem fails in PLL∞.245

4.2 Consistency via a progressing criterion246

In a non-wellfounded setting such as PLL∞, any sequent is provable. Indeed, the (non-247

wellfounded) coderivation D in Figure 6 shows that any non-empty sequent (in particular,248

any formula) is provable in PLL∞, and the empty sequent is provable in PLL∞ by applying249

the cut rule on the conclusions B and B⊥ (for any formula B) of two derivations D .250

The standard way to recover logical consistency in non-wellfounded proof theory is to251

introduce a global soundness condition on coderivations, called progressing criterion. In252

PLL∞, this criterion relies on tracking occurrences of !-formulas in a coderivation.253

▶ Definition 11. Let D be a coderivation in PLL∞. It is weakly progressing if every infinite254

branch contains infinitely many right premises of c!p-rules.255

An occurrence of formula in a premise of a rule r is the parent of an occurrence of a256

formula in the conclusion if they are connected according to the edges depicted in Figure 10.257

A !-thread (resp. ?-thread) in D is a maximal sequence (Ai)i∈I of !-formulas (resp. ?-258

formulas) for some downward-closed I ⊆ N such that Ai+1 is the parent of Ai for all i ∈ I. A259

!-thread (Ai)i∈I is progressing if Aj is in the conclusion of a c!p for infinitely many j ∈ I.260

M. Acclavio, G. Curzi and G. Guerrieri 23:9

ax
A, A⊥

F 1, . . . F
n
, A A⊥, G1, . . . , G

mcut
F 1, . . . , F

n
, G1, . . . , G

m

F 1, . . . F
n
, A , B

`
F 1, . . . , F

n
, A ` B

F 1, . . . F
n
, A B, G1, . . . , G

m⊗
F 1, . . . , F

n
, A ⊗ B, G1, . . . , G

m
,

1
1

F 1, . . . , F
n⊥

F 1, . . . , F
n
, ⊥

F1, . . . , Fn, A ?F 1, . . . , ?F
n
, !A

c!p
?F 1, . . . , ?F

n
, !A

F 1, . . . , F
n?w

F 1, . . . , F
n
, ?A

F 1, . . . , F
n
, A, ?A

?b
F 1, . . . , F

n
, ?A

Figure 10 PLL∞ rules: edges connect a formula in the conclusion with its parent(s) in a premise.

D is progressing if every infinite branch contains a progressing !-thread. We define pPLL∞
261

(resp. wpPLL∞) as the set of progressing (resp. weak-progressing) coderivations in PLL∞.262

▶ Remark 12. Clearly, any progressing coderivation is weakly progressing too, but the263

converse fails (Example 13), therefore pPLL∞ ⊊ wpPLL∞. Moreover, the main branch of any264

nwb contains by definition a progressing !-thread of its principal formula.265

▶ Example 13. Coderivations in Figure 6 are not weakly progressing (hence, not progressing):
the rightmost branch of D , i.e., the branch {ϵ, 2, 22, . . .}, and the unique branch of D? are
infinite and contain no c!p-rules. In contrast, the nwb c!p(i0,...,in,...) in Example 10 is
progressing by Remark 12, since its main branch is the only infinite branch. Below, a regular,
weakly progressing but not progressing coderivation (!X in the conclusion of c!p is a cut
formula, so the branch {ϵ, 2, 21, 212, 2121, . . . } is infinite but has no progressing !-thread).

ax
X, X⊥

ax
X, X⊥

...
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥, !X
c!p

?X⊥, !X
ax

?X⊥, !X
cut

?X⊥ , !X
c!p

?X⊥ , !X

▶ Lemma 14. Let Γ be a sequent. Then, ⊢PLL Γ if and only if ⊢wpPLL∞ Γ.266

Proof. Given D ∈ PLL, D• ∈ PLL∞ preserves the conclusion and is progressing, hence weakly267

progressing (see Remark 12). Conversely, given a weakly progressing coderivation D, we define268

a derivation Df ∈ PLL with the same conclusion by applying, bottom-up, the translation:269

 D

Γ′
r

Γ


f

:=
Df

Γ′
r

Γ

 D1

Γ1

D2

Γ2
r

Γ


f

:=
D1

f

Γ1

D2
f

Γ2
r

Γ

 D

Γ, A

D′

?Γ, !A
c!p

?Γ, !A


f

:=
Df

Γ, A
f!p

?Γ, !A
270

with r ̸= c!p. Note that the derivation Df is well-defined because D is weakly progressing. ◀271

▶ Corollary 15. The empty sequent is not provable in wpPLL∞ (and hence in pPLL∞).272

Proof. If the empty sequent were provable in wpPLL∞, then there would be a cut-free273

derivation D ∈ PLL of the empty sequent by Lemma 14 and Theorem 5, but this is impossible274

since cut is the only rule in PLL that could have the empty sequent in its conclusion. ◀275

4.3 Recovering (weak forms of) regularity276

The progressing criterion cannot capture the finiteness condition of the rule ib!p in the277

derivations in nuPLL. By means of example, consider the nwb below, which is progressive278

but cannot be the image of the rule ib!p via (·)• (see Figure 7) since {Di | i ∈ N} is infinite.279

CVIT 2016

23:10 Infinitary cut-elimination via finite approximations

D0

!N

D1

!N

Dn

!N

...
c!p

!!N
c!p

...
c!p

!!N
c!p

!!N

with Di = c!p(1,...,1︸ ︷︷ ︸
i

,0,...) for each i ∈ N. (4)280

To identify in pPLL∞ the coderivations corresponding to derivations in nuPLL and in PLL281

via the translations (·)• and (·)◦, respectively, we need additional conditions.282

▶ Definition 16. A coderivation is weakly regular if it has only finitely many distinct283

sub-coderivations whose conclusions are left premises of c!p-rules; it is finitely expandable284

if any branch contains finitely many cut and ?b rules. We denote by wrPLL∞ (resp. rPLL∞)285

the set of weakly regular (resp. regular) and finitely expandable coderivations in pPLL∞.286

▶ Remark 17. Regularity implies weak regularity and the converse fails as shown in Example 18287

below, therefore rPLL∞ ⊊ wrPLL∞. Moreover, D∈ PLL∞ is regular (resp. weakly regular) if288

and only if any nwb in D is periodic (resp. has finite support).289

▶ Example 18. Coderivations D and D? in Figure 6 are not finitely expandable, as their290

infinite branch has infinitely many cut or ?b, but they are weakly regular, since they have no291

c!p rules. The coderivation in (4) is not weakly regular because {Di | i ∈ N} is infinite.292

An example of a weakly regular but not regular coderivation is the nwb c!p(i0,...,in,...)293

in Example 10 when the infinite sequence (ij)j∈N ∈ {0, 1}ω is not periodic: in each rule294

c!p there, the left premise can only be 0 or 1 (so the nwb is weakly regular), but the right295

premise is a distinct coderivation (so the nwb is not regular). Moreover, that nwb is finitely296

expandable since it contains no ?b or cut.297

The sets rPLL∞ and wrPLL∞ are the non-wellfounded counterparts of PLL and nuPLL,298

respectively. Indeed, we have the following correspondence via the translations (·)◦ and (·)•.299

▶ Proposition 19. 1. If D ∈ PLL (resp. D ∈ nuPLL) with conclusion Γ, then D◦ ∈ rPLL∞
300

(resp. D• ∈ wrPLL∞) with conclusion Γ, and every c!p in D◦ (resp. D•) belongs to a nwb.301

2. If D′ ∈ rPLL∞ (resp. D′ ∈ wrPLL∞) and every c!p in D′ belongs to a nwb, then there is302

D ∈ PLL (resp. D ∈ nuPLL) such that D◦ = D′ (resp. D• = D′).303

Progressing and weak progressing coincide in finite expandable coderivations.304

▶ Lemma 20. Let D ∈ PLL∞ be finitely expandable. If D ∈ wpPLL∞ then any infinite branch305

contains the principal branch of a nwb. Moreover, D ∈ pPLL∞ iff D ∈ wpPLL∞.306

Proof. Let D ∈ wpPLL∞ be finitely expandable, and let B be an infinite branch in D.307

By finite expandability there is h ∈ N such that B contains no conclusion of a cut or ?b308

with height greater than h. Moreover, by weakly progressing there is an infinite sequence309

h ≤ h0 < h1 < . . . < hn < . . . such that the sequent of B at height hi has shape ?Γi, !Ai. By310

inspecting the rules in Figure 1, each such ?Γi, !Ai can be either the conclusion of either a ?w311

or a c!p (with right premise ?Γi, !Ai). So, there is a k large enough such that, for any i ≥ k,312

only the latter case applies (and, in particular, Γi = Γ and Ai = A for some Γ, A). Therefore,313

hk is the root of a nwb. This also shows D ∈ pPLL∞. By Remark 12, pPLL∞ ⊆ wpPLL∞. ◀314

By inspecting the steps in Figures 3, 5, and 9, we prove the following preservations.315

▶ Proposition 21. Cut elimination preserves weak-regularity, regularity and finite expandab-316

ility. Therefore, if D ∈ X with X ∈ {rPLL∞, wrPLL∞} and D →cut D′, then also D′ ∈ X.317

M. Acclavio, G. Curzi and G. Guerrieri 23:11

5 Continuous cut-elimination318

Cut-elimination for (finitary) sequent calculi proceeds by introducing a proof rewriting319

strategy that stepwise decreases an appropriate termination ordering (see, e.g, [33]). Typically,320

these proof rewriting strategies consist on pushing upward the topmost cuts via the cut-321

elimination steps in order to eventually eliminate them.322

A somewhat dual approach is investigated in the context of non-wellfounded proofs [3, 16].323

It consists on infinitary proof rewriting strategies that gradually push upward the bottommost324

cuts. In this setting, the progressing condition is essential to guarantee productivity, i.e., that325

such proof rewriting strategies construct strictly increasing approximations of the cut-free326

proof, which can thus be obtained as a (well-defined) limit.327

A major obstacle of this approach arises when the bottommost cut r is below another one328

r′. In this case, no cut-elimination step can be applied to r, so proof rewriting runs into an329

apparent stumbling block. To circumvent this problem, in [3, 16] a special cut-elimination330

step is introduced, which merges r and r′ in a single, generalized cut rule called multicut.331

In this section we study a continuous cut-elimination method that does not rely on332

multicut rules, following an alternative idea in which the notion of approximation plays an333

even more central rule, inspired by the topological approaches to infinite trees [6]. To this334

end, we assume the reader familiar with basic definitions on domain-theory (see, e.g., [1]).335

5.1 Approximating coderivations336

In this subsection we introduce open coderivations, which approximate coderivations. Open337

coderivations form Scott-domains, on top of which we will formally define continuous cut338

elimination. Furthermore, we exploit open coderivations to present a decomposition result339

for finitely expandable and progressing coderivations.340

▶ Definition 22. We define the set of rules oPLL∞ := PLL∞ ∪ {hyp}, where hyp := hyp
Γ

for341

any sequent Γ.4 We will also refer to oPLL∞ as the set of coderivations over oPLL∞, which342

we call open coderivations. An open coderivation is normal if no cut-elimination step343

can be applied to it, that is, if one premise of each cut is a hyp. An open derivation is a344

derivation in oPLL∞. We denote by oPLL∞(Γ) the set of open coderivations with conclusion345

Γ, and by K(D) the set of finite approximations of D.346

▶ Definition 23. Let D be an open coderivation, V ⊆ {1, 2}∗ be a set of mutually incomparable347

(w.r.t. the prefix order) nodes of D, and {D′
ν}ν∈V be a set of open coderivations where D′

ν348

has the same conclusion as the subderivation Dν of D. We denote by D{D′
ν/ν}ν∈V =349

D(D′
ν1

/ν1, . . . , D′
νn

/νn), the open coderivation obtained by replacing each Dν with D′
ν .350

The pruning of D over V is the open coderivation ⌊D⌋V = D{hyp/ν}ν∈V . If D and D′
351

are two open coderivations, then we say that D is an approximation of D′ (noted D ⪯ D′)352

iff D = ⌊D′⌋V for some V ⊆ {1, 2}∗. An approximation is finite if it is an open derivation.353

Note that D and ⌊D⌋V (and hence D′ if D ⪯ D′) have the same conclusion.354

▶ Proposition 24. For any sequent Γ, the poset (oPLL∞(Γ), ⪯) is a Scott-domain with least355

element the open derivation hyp and with maximal elements the coderivations (in PLL∞) with356

conclusion Γ. The compact elements are precisely the open derivations in oPLL∞(Γ).357

4 Previously introduced notions and definitions on coderivations extend to open coderivations in the
obvious way, e.g. the global conditions Definitions 11 and 16 and the cut-elimination relation →cut.

CVIT 2016

23:12 Infinitary cut-elimination via finite approximations

Cut-elimination steps essentially do not increase the size of open derivations, hence:358

▶ Lemma 25. →cut over open derivations is strongly normalizing and confluent.359

Progressing and finitely expandable coderivations can be approximated in a canonical way.360

▶ Proposition 26. If D ∈ pPLL∞ is finitely expandable, then there is a finite set V ⊆ {1, 2}∗
361

of nodes of D such that ⌊D⌋V is a open derivation and each v ∈ V is the root of a nwb in D.362

Proof. By Lemma 20, there is a set V of nodes of D such that: (i) each node in V is the363

root of a nwb, and (ii) any infinite branch of D contains a node in V. Thus, ⌊D⌋V must be364

finite by weak König’s lemma, and so is V. ◀365

▶ Definition 27. Let D ∈ pPLL∞ be finitely expandable. The decomposition of D is the366

(unique) set of nodes border(D) = {ν1, . . . , νk} with k ∈ N such that Dνi
is a nwb for all367

i ∈ {1, . . . , k} and base(D) := ⌊D⌋border(D) is a minimal (w.r.t. ⪯) finite approximation.368

5.2 Domain-theoretic approach to continuous cut-elimination369

In this subsection we define maximal and continuous infinitary cut-elimination strategies370

(mc-ices), special rewriting strategies that stepwise generate ω-chains approximating the cut-371

free version of an open coderivation. In other words, a mc-ices computes a (Scott-)continuous372

function from open coderivations to cut-free open coderivations. Then, we introduce the373

height-by-height mc-ices, a notable example of mc-ices that will be used for our results, and374

we show that any two mc-icess compute the same (Scott-)continuous function.375

In what follows, σ denotes a countable sequence of coderivations, and σ(i) denotes the376

i + 1-th coderivation in σ. We denote the length of a sequence σ by ℓ(σ) ≤ ω.377

▶ Definition 28. An infinitary cut elimination strategy (or ices for short) is a family378

σ = {σD}D∈oPLL∞ where, for all D ∈ oPLL∞, σD is a sequence of open coderivations such379

that σD(0) = D and σD(i) →cut σD(i + 1) for all 0 ≤ i < ℓ(σD). Given a ices σ, we define380

the function fσ : oPLL∞(Γ) → oPLL∞(Γ) as fσ(D) :=
⊔ℓ(σD)

i=0 cf(σD(i)) where cf(Di) is the381

greatest cut-free approximation of Di (w.r.t. ⪯)5. An ices σ is a mc-ices if it is:382

maximal: σD(ℓ(σD)) is normal for any open derivation D (ℓ(σD) < ω by Lemma 25);383

(Scott)-continuous: fσ is Scott-continuous.384

Roughly, a maximal ices is a ices that applies cut-elimination steps to open derivations385

(i.e., finite approximations) until a normal (possibly cut-free) open derivation is reached.386

The following property states that all mc-icess induce the same continuous function, an387

easy consequence of Lemma 25 and continuity.388

▶ Proposition 29. If σ and σ′ are two mc-icess, then fσ = fσ′ .389

Therefore, we define a specific mc-ices we use in our proofs, where cut-elimination steps390

are applied in a deterministic way to the minimal reducible cut-rules.391

▶ Definition 30. The height-by-height ices is defined as σ∞ = {σ∞
D }D∈oPLL∞ where392

σ∞
D (0) = D for each D ∈ oPLL∞, and σ∞

D (i + 1) is the open coderivation obtained by applying393

a cut-elimination step to the leftmost reducible cut-rule with minimal height in σ∞
D (i).394

▶ Proposition 31. The ices σ∞ is a mc-ices.395

5 fσ is well-defined, as (cf(σD(i)))0≤i<ℓ(σD) is an ω-chain in oPLL∞ and so its sup exists by Proposition 24.

M. Acclavio, G. Curzi and G. Guerrieri 23:13

Proof. By definition, σ∞ is continuous. It is also maximal since, by Lemma 25, any open396

derivation D normalizes in nD ∈ N steps; so, ℓ(σ∞
D) = nD and σ∞

D (hD) is normal. ◀397

We conclude this section by providing the sketch of proof for the continuous cut-elimination398

theorem, the main contribution of this paper, establishing a productivity result and showing399

that continuous cut-elimination preserves all global conditions.400

▶ Theorem 32 (Continuous Cut-Elimination).401

1. If D ∈ wpPLL∞, then fσ∞(D) ∈ PLL∞.402

2. If D ∈ wpPLL∞ (resp. D ∈ pPLL∞), then so is fσ∞(D).403

3. If D ∈ wpPLL∞ is finitely expandable, then so is fσ∞(D).404

4. If D ∈ wrPLL∞ (resp. D ∈ rPLL∞), then so is fσ∞(D).405

Sketch of proof.406

1. It suffices to prove that for any h ≥ 0 there is nh ≥ 0 such that cf(σ∞
D (nh)) has a hyp-free407

bar Vh of rules in {ax, 1, c!p} of height greater than h. The existence of a starting bar for408

D = σ∞
D (0) is ensured by weak-progressing condition. Then, we show how to define bars409

of greater height through cut-elimination. The key case is when a c!p-rule in the bar is410

eliminated by a c!p-vs-?b step, in which case we exploit Proposition 21 to find such a new411

bar. The crucial property to establish is that only finitely many refinements of a starting412

bar are needed to find the Vh, which follows from the fact that, by weak-progressing413

condition, there is no branch of D that contains infinitely many consecutive ?b rules.414

2. We prove the result for D ∈ pPLL∞ since the proof for D ∈ wpPLL∞ is similar. By the415

previous point, fσ∞(D) ∈ PLL∞. By Proposition 21 σ∞
D (i) is progressing for all i < ω.416

Therefore if fσ∞(D) contains a non-progressing branch B, it must have been stepwise417

constructed by pushing upward a cut-rule in D. We can track the occurrences of this418

cut-rule in σ∞
D to define a sequence (r0, r1, . . . , rn, . . .)i≤ω of cut-rules such that ri ∈ σ∞

D (i)419

and either ri = ri+1 or σ∞
D (i) →cut σ∞

D (i + 1) by applying a cut-elimination step on ri420

producing ri+1. This sequence of cut rules must reduce infinitely many occurrences of a421

formula ?A⊥ (in a same ?-thread) with infinitely many occurrences of a !A (in a same422

!-thread). That is, there are infinitely many cut-elimination step c!p-vs-c!p in the σ∞
D423

producing an infinite progressing !-thread in B.424

3. Similar to the previous point.425

4. Akin to linear logic, we define the depth of a coderivation as the maximal number of nested426

nwbs, and we prove that the depth of progressing and finitely expandable coderivations is427

always finite. Moreover, by Proposition 26, a weak-progressing and infinitely expandable428

coderivation D can be decomposed to a nwb-free finite approximation base(D) and a series429

of nwbs S1, . . . ,Sk with smaller depth. Using this property we define by induction on430

the depth of D a maximal and transfinite ices reducing the calls of the nwbs orderly, that431

is, reducing the i-th call to a cut-free coderivation before reducing the i + 1-th one. This432

transfinite ices has the advantage of making apparent the preservation of (weak) regularity433

under cut-elimination: leveraging on Remark 17, if we reduce a nwb with finite support434

(resp. a periodic nwb) via our transfinite ices, then we obtain in the limit a cut-free nwb435

with finite support (resp. a periodic nwb). We conclude by showing that this transfinite436

ices can be compressed to a (ω-long) mc-ices using methods studied in [32, 29]. ◀437

By definition (as the sup of cut-free open coderivations) fσ∞(D) is cut-free. Each item of438

Theorem 32 say in particular that fσ∞(D) is hyp-free, which means that fσ∞(D) is obtained439

by eliminating all the cuts in D. This may not be the case if D does not fulfill any of the440

global conditions in the hypotheses of Theorem 32: fσ∞(D) is still cut-free but may contain441

some “truncating” hyp that “prevented” eliminating some cut in D, as in the example below.442

CVIT 2016

23:14 Infinitary cut-elimination via finite approximations

{{
ax

A, A⊥

}}
n

=
{

(x, x) x ∈ {{A}}
} 


D′

Γ, A

D′′

∆, A⊥
cut

Γ, ∆




n

=

 (x⃗, y⃗) ∃z ∈ {{A}} s.t.
(x⃗, z) ∈ {{D′}}n−1

and
(z, y⃗) ∈ {{D′′}}n−1




D′

Γ
⊥

Γ, ⊥




n

=
{

(x⃗, ∗) x⃗ ∈ {{D′}}n−1
} 


D′

Γ, A, B`
Γ, A ` B




n

=
{

(x⃗, (y, z)) (x⃗, y, z) ∈ {{D′}}n−1
}

{{
1

1

}}
n

= {∗}




D′

Γ, A

D′′

∆, B
⊗

Γ, ∆, A ⊗ B




n

=

 (x⃗, y⃗, (x, y))
(x⃗, x) ∈ {{D′}}n−1

and
(y⃗, y) ∈ {{D′′}}n−1


{{

hyp
Γ

}}
n

= ∅




D′

Γ
?w

Γ, ?A




n

=
{

(x⃗, []) x⃗ ∈ {{D′}}n−1
} 


D′

Γ, A, ?A
?b

Γ, ?A




n

=
{

(x⃗, [y] + µ) (x⃗, y, µ) ∈ {{D′}}n−1
}




D′

Γ, A

D′′

?Γ, !A
c!p

?Γ, !A




n

=
{

([⃗], [])
}

∪

 ([x1] + µ1, . . . , [xk] + µk, [x] + µ)
(x1, . . . , xk, x) ∈ {{D′}}n−1

and
(µ1, . . . , µk, µ) ∈ {{D′′}}n−1


Figure 11 Inductive definition of the set {{D}}n, for n > 0.

▶ Example 33. For any finite approximation D of the (non-weakly progressing, non-finitely443

expandable) open coderivation D , we have fσ∞(D) = hyp, so fσ∞(D) = hyp by continuity.444

6 Relational semantics for non-wellfounded proofs445

Here we define a denotational model for oPLL∞ based on relational semantics, which interprets446

an open coderivation as the union of the interpretations of its finite approximations, as in [14].447

We show that relational semantics is sound for oPLL∞, but not for its extension with digging.448

Relational semantics interprets exponential by finite multisets, denoted by brackets, e.g.,449

[x1, . . . , xn]; + denotes the multiset union, Mf (X) denotes the set of finite multisets over a450

set X. To correctly define the semantics of a coderivation, we need to see sequents as finite451

sequence of formulas (taking their order into account), which means that we have to add an452

exchange rule to oPLL∞ to swap the order of two consecutive formulas in a sequent.453

▶ Definition 34. We associate with each formula A a set {{A}} defined as follows:454

{{X}} := DX {{1}} := {∗} {{A ⊗ B}} := {{A}} × {{B}} {{!A}} := Mf ({{A}}) {{A⊥}} := {{A}}455

where DX is an arbitrary set. For a sequent Γ = A1, . . . , An, we set {{Γ}} := {{A1`· · ·`An}}.456

Given D ∈ PLL ∪ oPLL∞ with conclusion Γ, we set {{D}} :=
⋃

n≥0{{D}}n ⊆ {{Γ}}, where457

{{D}}0 = ∅ and, for all i ∈ N \ {0}, {{D}}i is defined inductively according to Figure 11.458

▶ Example 35. For the coderivations D and D? in Figure 6, {{D }} = {{D?}} = ∅. For the459

derivations 0 and 1 in Figure 2, {{0}} = {([], (x, x)) | x ∈ DX} and {{1}} = {([(x, y)], (x, y)) |460

x, y ∈ DX}. For the coderivation c!p(i0,...,in,...) in Example 10 (with ij ∈ {0, 1} for all j ∈ N),461

{{c!p(i0,...,in,...)}} = {[]} ∪
{

[xi0 , . . . , xin
] ∈ Mf ({{N}}) | n ∈ N, xij

∈ {{ij}} ∀ 0 ≤ j ≤ n
}

.462

By inspecting the cut-elimination steps and by continuity, we can prove the soundness of463

relational semantics with respect to cut-elimination (Theorem 37), thanks to the fact the464

interpretation of a coderivation is the union the interpretations of its finite approximation.465

▶ Lemma 36. Let D ∈ oPLL∞. Then, {{D}} =
⋃

D′∈K(D){{D′}}.466

M. Acclavio, G. Curzi and G. Guerrieri 23:15

Γ, ??A
??d

Γ, ?A




D′

Γ, ??A
??d

Γ, ?A




0

= ∅




D′

Γ, ??A
??d

Γ, ?A




n

=
{(

x⃗,
m∑

i=1
µi

)
(x⃗, [µ1, . . . , µm]) ∈ {{D′}}n−1 , m ∈ N

}

Figure 12 The rule ??d and its interpretation in the relational semantics (n > 0).

▶ Theorem 37 (Soundness). 1. Let D ∈ oPLL∞. If D →cut D′, then {{D}} = {{D′}}.467

2. Let D ∈ oPLL∞. If σ is a mc-ices, then {{D}} = {{fσ(D)}}.468

By Theorem 37 and since cut-free coderivations have non-empty semantics, we have:469

▶ Corollary 38. Let D ∈ wpPLL∞. Then {{D}} ̸= ∅.470

We define the set of rules MELL∞ := PLL∞ ∪ {??d} where the rule ??d (digging) is471

defined in Figure 12. We also denote by MELL∞ the set of coderivations over the rules in472

MELL∞. Relational semantics is naturally extended to MELL∞ as shown in Figure 12.473

The proof system MELL∞ can be seen as a non-wellfounded version of MELL. We show474

that, as opposed to several fragments of PLL∞, in any good fragment of MELL∞ with digging,475

cut-elimination cannot reduce to cut-free coderivations preserving the relational semantics.476

▶ Theorem 39. Let X ⊆ MELL∞ contain non-wellfounded coderivations with ??d. Let →cut+477

be a cut-elimination relation on X containing →cut in Figures 3, 5, and 9 and reducing every478

coderivation in X to a cut-free one. Then, →cut+ does not preserve relational semantics.479

Proof. Consider the coderivations D??d and D̂??d below, where D = c!p(0,1,0,1,...), and480

Di = c!p(ki
0,...,ki

n,...) and ki
j ∈ {0, 1} for all i, j ∈ N (see also Example 10).481

D??d :=
D

!N

ax
??N⊥, !!N

??d
?N⊥, !!N

cut
!!N

D̂??d :=
D0

!N

D1

!N

Dn

!N

...
c!p

!!N
c!p

...
c!p

!!N
c!p

!!N

(5)482

Coderivations D̂??d are the only cut-free ones with conclusion !!N. Therefore, for whatever483

definition of the cut-elimination steps concerning ??d, necessarily D??d will reduce to D̂??d.484

Let 0̂ be the only element of {{0}}, and 1̂ be any element of {{1}} (see Example 35). Note485

that 0̂ ̸= 1̂. It is easy to verify that [[0̂], [0̂]], [[1̂], [1̂]] /∈ {{D??d}}, since [0̂, 0̂], [1̂, 1̂] /∈ {{D}}486

(see Example 35). Concerning {{D̂??d}}, we notice that, since k0
0, k1

0, k2
0 ∈ {0, 1}, either487

k0
0 = k1

0 or k1
0 = k2

0 or k2
0 = k0

0. In the first case, we have [[k0
0], [k1

0]] ∈ {{D̂??d}}, in the second488

case we have [[k1
0], [k2

0]] ∈ {{D̂??d}}, and in the last case we have [[k2
0], [k0

0]] ∈ {{D̂??d}}. ◀489

7 Conclusion and future work490

For future research, we envisage extending our contributions in many directions. First, our491

notion of finite approximation seems intimately related with that of Taylor expansion from492

differential linear logic (DiLL) [12], where the rule hyp (quite like the rule 0 from DiLL) serves493

to model approximations of boxes. This connection with Taylor expansions becomes even494

more apparent in Mazza’s original systems for parsimonious logic [22, 23], which comprise495

co-absorption and co-weakening rules typical of DiLL. These considerations deserve further496

investigations. Secondly, building on a series of recent works in Cyclic Implicit Complexity,497

i.e., implicit computational complexity in the setting of circular and non-wellfounded proof498

theory [8, 7], we are currently working on second-order extensions of wrPLL∞ and rPLL∞ to499

characterize the complexity classes P/poly and P (see [21]). These results would reformulate500

in a non-wellfounded setting the characterization of P/poly presented in [23].501

CVIT 2016

23:16 Infinitary cut-elimination via finite approximations

References502

1 Roberto M. Amadio and Pierre-Louis Curien. Domains and lambda-calculi, volume 46 of503

Cambridge tracts in theoretical computer science. Cambridge University Press, 1998.504

2 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge505

University Press, 2009. doi:10.1017/CBO9780511804090.506

3 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative507

additive case. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual508

Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille,509

France, volume 62 of LIPIcs, pages 42:1–42:17. Schloss Dagstuhl - Leibniz-Zentrum für510

Informatik, 2016. doi:10.4230/LIPIcs.CSL.2016.42.511

4 David Baelde and Dale Miller. Least and greatest fixed points in linear logic. In Nachum512

Dershowitz and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and513

Reasoning, 14th International Conference, LPAR 2007, Yerevan, Armenia, October 15-19,514

2007, Proceedings, volume 4790 of Lecture Notes in Computer Science, pages 92–106. Springer,515

2007. doi:10.1007/978-3-540-75560-9_9.516

5 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent.517

Journal of Logic and Computation, 21(6):1177–1216, 2011.518

6 Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Sci-519

ence, 25(2):95–169, 1983. URL: https://www.sciencedirect.com/science/article/pii/520

0304397583900592, doi:https://doi.org/10.1016/0304-3975(83)90059-2.521

7 Gianluca Curzi and Anupam Das. Cyclic implicit complexity. In Proceedings of the 37th522

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, New York, NY,523

USA, 2022. Association for Computing Machinery. doi:10.1145/3531130.3533340.524

8 Gianluca Curzi and Anupam Das. Non-uniform complexity via non-wellfounded proofs. In525

Bartek Klin and Elaine Pimentel, editors, 31st EACSL Annual Conference on Computer526

Science Logic, CSL 2023, February 13-16, 2023, Warsaw, Poland, volume 252 of LIPIcs, pages527

16:1–16:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.528

CSL.2023.16.529

9 Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Inf. Comput.,530

183(1):123–137, 2003. doi:10.1016/S0890-5401(03)00010-5.531

10 Anupam Das. On the logical strength of confluence and normalisation for cyclic proofs. In532

Naoki Kobayashi, editor, 6th International Conference on Formal Structures for Computation533

and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual Conference),534

volume 195 of LIPIcs, pages 29:1–29:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,535

2021. doi:10.4230/LIPIcs.FSCD.2021.29.536

11 Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear time µ-537

calculus. In International Conference on Foundations of Software Technology and Theoretical538

Computer Science, pages 273–284. Springer, 2006.539

12 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antide-540

rivatives, 2016. arXiv:1606.01642.541

13 Thomas Ehrhard and Farzad Jafar-Rahmani. On the denotational semantics of linear logic542

with least and greatest fixed points of formulas. CoRR, abs/1906.05593, 2019. URL: http:543

//arxiv.org/abs/1906.05593, arXiv:1906.05593.544

14 Thomas Ehrhard, Farzad Jafarrahmani, and Alexis Saurin. On relation between totality545

semantic and syntactic validity. In 5th International Workshop on Trends in Linear Logic and546

Applications (TLLA 2021), Rome (virtual), Italy, June 2021. URL: https://hal-lirmm.ccsd.547

cnrs.fr/lirmm-03271408.548

15 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.549

In Computer Science Logic 2013 (CSL 2013). Schloss Dagstuhl-Leibniz-Zentrum fuer Inform-550

atik, 2013.551

16 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.552

In Simona Ronchi Della Rocca, editor, Computer Science Logic 2013 (CSL 2013), CSL 2013,553

https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1007/978-3-540-75560-9_9
https://www.sciencedirect.com/science/article/pii/0304397583900592
https://www.sciencedirect.com/science/article/pii/0304397583900592
https://www.sciencedirect.com/science/article/pii/0304397583900592
https://doi.org/https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.1145/3531130.3533340
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://doi.org/10.4230/LIPIcs.CSL.2023.16
https://doi.org/10.1016/S0890-5401(03)00010-5
https://doi.org/10.4230/LIPIcs.FSCD.2021.29
https://arxiv.org/abs/1606.01642
http://arxiv.org/abs/1906.05593
http://arxiv.org/abs/1906.05593
http://arxiv.org/abs/1906.05593
https://arxiv.org/abs/1906.05593
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03271408

M. Acclavio, G. Curzi and G. Guerrieri 23:17

September 2-5, 2013, Torino, Italy, volume 23 of LIPIcs, pages 248–262. Schloss Dagstuhl -554

Leibniz-Zentrum für Informatik, 2013. doi:10.4230/LIPIcs.CSL.2013.248.555

17 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987. doi:556

10.1016/0304-3975(87)90045-4.557

18 Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204,558

1998. URL: https://www.sciencedirect.com/science/article/pii/S0890540198927006,559

doi:10.1006/inco.1998.2700.560

19 Denis Kuperberg, Laureline Pinault, and Damien Pous. Cyclic proofs, system T, and the power561

of contraction. Proc. ACM Program. Lang., 5(POPL):1–28, 2021. doi:10.1145/3434282.562

20 Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, 318(1):163–563

180, 2004. Implicit Computational Complexity. doi:10.1016/j.tcs.2003.10.018.564

21 Gianluca Curzi Matteo Acclavio and Giulio Guerrieri. Non-uniform polynomial565

time via non-wellfounded parsimonious proofs. URL: http://gianlucacurzi.com/566

Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf.567

22 Damiano Mazza. Simple parsimonious types and logarithmic space. In Stephan Kreutzer,568

editor, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10,569

2015, Berlin, Germany, volume 41 of LIPIcs, pages 24–40. Schloss Dagstuhl - Leibniz-Zentrum570

für Informatik, 2015. doi:10.4230/LIPIcs.CSL.2015.24.571

23 Damiano Mazza and Kazushige Terui. Parsimonious types and non-uniform computation. In572

Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors,573

Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto,574

Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer575

Science, pages 350–361. Springer, 2015. doi:10.1007/978-3-662-47666-6_28.576

24 Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexpo-577

nentials. In António Porto and Francisco Javier López-Fraguas, editors, Proceedings of578

the 11th International ACM SIGPLAN Conference on Principles and Practice of Declar-579

ative Programming, September 7-9, 2009, Coimbra, Portugal, pages 129–140. ACM, 2009.580

doi:10.1145/1599410.1599427.581

25 Damian Niwiński and Igor Walukiewicz. Games for the µ-calculus. Theoretical Computer582

Science, 163(1-2):99–116, 1996.583

26 Michele Pagani and Lorenzo Tortora de Falco. Strong normalization property for second order584

linear logic. Theor. Comput. Sci., 411(2):410–444, jan 2010. doi:10.1016/j.tcs.2009.07.053.585

27 Myriam Quatrini. Sémantique cohérente des exponentielles: de la logique linéaire à la logique586

classique. PhD thesis, Aix-Marseille 2, 1995.587

28 Luca Roversi and Luca Vercelli. Safe recursion on notation into a light logic by levels. In588

Patrick Baillot, editor, Proceedings International Workshop on Developments in Implicit589

Computational complExity, DICE 2010, Paphos, Cyprus, 27-28th March 2010, volume 23 of590

EPTCS, pages 63–77, 2010. doi:10.4204/EPTCS.23.5.591

29 Alexis Saurin. A linear perspective on cut-elimination for non-wellfounded sequent calculi592

with least and greatest fixed points (extended version). working paper or preprint, 2023. URL:593

https://hal.science/hal-04169137.594

30 Alex Simpson. Cyclic arithmetic is equivalent to peano arithmetic. In Javier Esparza and595

Andrzej S. Murawski, editors, Foundations of Software Science and Computation Structures -596

20th International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences597

on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,598

Proceedings, volume 10203 of Lecture Notes in Computer Science, pages 283–300, 2017.599

doi:10.1007/978-3-662-54458-7_17.600

31 Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism,601

Volume 149 (Studies in Logic and the Foundations of Mathematics). Elsevier Science Inc.,602

USA, 2006.603

32 Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer science.604

Cambridge University Press, 2003.605

CVIT 2016

https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://www.sciencedirect.com/science/article/pii/S0890540198927006
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1145/3434282
https://doi.org/10.1016/j.tcs.2003.10.018
http://gianlucacurzi.com/Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf
http://gianlucacurzi.com/Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf
http://gianlucacurzi.com/Non-uniform-polynomial-time-via-non-wellfounded-parsimonious-proofs.pdf
https://doi.org/10.4230/LIPIcs.CSL.2015.24
https://doi.org/10.1007/978-3-662-47666-6_28
https://doi.org/10.1145/1599410.1599427
https://doi.org/10.1016/j.tcs.2009.07.053
https://doi.org/10.4204/EPTCS.23.5
https://hal.science/hal-04169137
https://doi.org/10.1007/978-3-662-54458-7_17

23:18 Infinitary cut-elimination via finite approximations

33 A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge Tracts in The-606

oretical Computer Science. Cambridge University Press, 2 edition, 2000. doi:10.1017/607

CBO9781139168717.608

https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717

M. Acclavio, G. Curzi and G. Guerrieri 23:19

 D

Γ′
r

Γ


♠

:=
D♠

Γ′
r

Γ

 D1

Γ1

D2

Γ2
t

Γ


♠

:=
D♠

1

Γ1

D♠
2

Γ2
t

Γ

 D

Γ, A, ?A
?b

Γ, ?A


♠

:=

D♠

Γ, A, ?A
?d

Γ, ?A, ?A
?c

Γ, ?A

 D

Γ, A
f!p

?Γ, !A


♠

:=

D♠

Γ, A
?d

?Γ, A
!p

?Γ, !A
for all r ∈ {ax,`, 1, ⊥, ?w} and t ∈ {cut, ⊗}

Figure 13 Translation (·)♠ from PLL to MELL.

Γ, A
f!p

?Γ, !A
A⊥, ∆, B

f!p
?A⊥, ?∆, !B

cut
?Γ, ?∆, !B

Γ, A
?d

?Γ, A
!p

?Γ, !A

A⊥, ∆, B
?d

?A⊥, ?∆, B
!p

?A⊥, ?∆, !B
cut

?Γ, ?∆, !B

Γ, A
?d

?Γ, A
!p

?Γ, !A

A⊥, ∆, B
?d

?A⊥, ∆, B
?d

A⊥, ?∆, B
cut

?Γ, ?∆, B
!p

?Γ, ?∆, !B

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
f!p

?Γ, ?∆, !B

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
?d

?Γ, ?∆, B
!p

?Γ, ?∆, !B

♠

?b-vs-f!p

f!p-vs-f!p

f!p-vs-?d

♠

Figure 14 Commutation of the ?b-vs-f!p step and (·)♠.

A Appendix of Section 3609

▶ Theorem 5. For every D ∈ PLL, there is a cut-free D′ ∈ PLL such that D →∗
cut D′.610

Proof. We recall the sequent calculus for (propositional) multiplicative exponential linear611

logic MELL = {ax, ⊗,`, 1, ⊥, cut, !p, ?w, ?d, ?c} where the promotion (!p), dereliction (?d),612

contraction (?c) rules are defined as follows:613

?Γ, A
!p

?Γ, !A
Γ, A

?d
Γ, ?A

Γ, ?A, ?A
?c

Γ, ?A
(6)614

We also denote by MELL the set of derivations over the rules in MELL, and we map615

each derivation in D ∈ PLL to a derivation in (D)♠ ∈ MELL (·)♠ : PLL → MELL defined in616

Figure 13 by induction on derivations.617

In order to prove that the following diagram commute,

D D♠

D′ (D′)♠

♠

possibly many steps
♠

CVIT 2016

23:20 Infinitary cut-elimination via finite approximations

Each cut-elimination step in PLL corresponds to a cut-elimination step in MELL except618

the ones in Figures 14 and 15, where a cut-elimination step in PLL can be simulated by a619

sequence of cut-elimination steps in MELL. In these Figures each macro-step denoted by620

→→ involves a unique step from Figures 4 and 5 (the one marked) and certain additional621

commutative cut-elimination steps of the following form below622

Γ, A

A⊥, ∆, B
?d

A⊥, ∆, ?B
cut

Γ, ∆, ?B

→cut

Γ, A A⊥, ∆, B
cut

Γ, ∆, B
?d

Γ, ∆, ?B

Γ, A, ?B, ?B
?d

Γ, ?A, ?B, ?B
?c

Γ, ?A, ?B

→cut

Γ, A, ?B, ?B
?c

Γ, A, ?B
?d

Γ, ?A, ?B

(7)623

which push ?d down a cut and create an alternating chain of ?d and ?c (such additional steps624

are natural to consider since they involve rule permutations of independent rules and would625

appear whenever a cut-rule would interact with the ?-formula introduced by the ?d-rule).626

Thus, the derivation in MELL obtained by (standard and additional) cut-elimination from D♠
627

is exactly the translation (D′)♠ of the derivation D′ in PLL obtained after a cut-elimination628

step from D. According to the definition of (·)♠, if (D′)♠ is cut-free then so is D′.629

The termination of cut-elimination in MELL with this additional commutative step follows630

from the result in MELL [26]. Indeed, to the usual measure m that decreases after each631

standard cut-elimination step in MELL (and remains unchanged after each additional step in632

(7)), we can add the sum d of the heights of the ?d rules in a derivation, which decreases633

after each step in (7). Thus, the measure (m, d) with the lexicographical order decreases634

after each (standard or additional) cut-elimination step in MELL. ◀635

B Proofs of Section 4636

Akin to linear logic, the depth of a coderivation is the maximal number of nested nwbs.637

▶ Definition 40. Let D ∈ PLL∞. The nesting level of a sequent occurrence Γ in D638

is the number nlD(Γ) of nodes below it that are the root of a call of a nwb. The nesting639

level of a formula (occurrence) A in D, noted nlD(A), is the nesting level of the sequent640

that contain that formula. The nesting level of a rule r in D, noted nlD(r) (resp. of641

a sub-coderivation D′ of D, noted nlD(D′)), is the nesting level of the conclusion of r642

(resp. conclusion of D′).643

The depth of D is d(D) := supr∈D{nlD(r)} ∈ N ∪ {∞}.644

▶ Remark 41. All calls of a nwb have the same nesting level. Moreover, each of the sequents645

of its main branch have nesting level 0.646

Cut-elimination →cut on PLL∞ enjoys the following property.647

▶ Lemma 42. Let D, D′ ∈ PLL∞. If D →cut D′ then d(D) ≥ d(D′).648

Proof. By inspection of the cut-elimination steps in Figures 3, 5, and 9. ◀649

▶ Lemma 43. If D ∈ pPLL∞ then d(D) ∈ N.650

Proof. If D had infinite depth, there would exist an infinite branch that goes left at c!p651

infinitely often. This branch cannot contain a (progressing) !-thread. ◀652

▶ Proposition 19. 1. If D ∈ PLL (resp. D ∈ nuPLL) with conclusion Γ, then D◦ ∈ rPLL∞
653

(resp. D• ∈ wrPLL∞) with conclusion Γ, and every c!p in D◦ (resp. D•) belongs to a nwb.654

2. If D′ ∈ rPLL∞ (resp. D′ ∈ wrPLL∞) and every c!p in D′ belongs to a nwb, then there is655

D ∈ PLL (resp. D ∈ nuPLL) such that D◦ = D′ (resp. D• = D′).656

M. Acclavio, G. Curzi and G. Guerrieri 23:21

Proof.657

1. By straightforward induction on D ∈ PLL (resp. D ∈ nuPLL).658

2. By Lemma 43, d(D) ∈ N. We can then prove the statement by induction on d(D). ◀659

▶ Proposition 21. Cut elimination preserves weak-regularity, regularity and finite expandab-660

ility. Therefore, if D ∈ X with X ∈ {rPLL∞, wrPLL∞} and D →cut D′, then also D′ ∈ X.661

Proof. By inspection of the cut-elimination steps defined in Figures 3, 5, and 9. ◀662

C Proofs of Section 5663

▶ Lemma 25. →cut over open derivations is strongly normalizing and confluent.664

Proof. For D an open derivation, let C(D) be the number of c!p in D and H(D) be the sum of665

the sizes of all subderivations of D whose root is the conclusion of a cut rule. If D →cut D′ via:666

a commutative cut-elimination step, then C(D) = C(D′), |D| = |D′| and H(D) > H(D′);667

a multiplicative cut-elimination (Figure 3), then C(D) = C(D′) and |D| > |D′|;668

an exponential cut-elimination step (Figure 9), then C(D) > C(D′).669

Since the lexicographic order over the triples (C(D), |D|, H(D)) ∈ ω3 is wellfounded, we670

conclude that there is no infinite sequence (Di)i∈N such that D0 = D and Di →cut Di+1.671

Finally, since cut-elimination →cut is strongly normalizing over open derivations and it is672

locally confluent by inspection of critical pairs, by Newman’s lemma it is also confluent. ◀673

▶ Proposition 29. If σ and σ′ are two mc-icess, then fσ = fσ′ .674

Proof. For any open derivation D, since σ and σ′ are maximal, we have that σD(ℓ(σD)) and
σ′

D(ℓ(σ′
D)) are normal, and so σD(ℓ(σD)) = σ′

D(ℓ(σ′
D)) by Lemma 25. Hence:

fσ(D) = cf(σD(ℓ(σD))) = cf(σ′
D(ℓ(σ′

D))) = fσ′(D)

Now, let D be an open coderivation, and let F (D) be the set of its finite approximations.675

Since by Proposition 24 oPLL∞ is a Scott-domain, it is also algebraic, so that we have676

D =
⊔

D′∈F (D) D′. By continuity of fσ and fσ′ we have: fσ(D) =
⊔

D′∈F (D) fσ(D′) =677 ⊔
D′∈F (D) fσ′(D′) = fσ′(D). ◀678

▶ Definition 44 (c!p-chains). Let σ = {σD}D∈oPLL∞ be a ices and let D ∈ oPLL∞. For679

any i, we write ri ⇝ ri+1 if ri is a c!p rule in σD(i), ri+1 is a c!p rule in σD(i + 1), and680

σD(i) →cut σD(i + 1) is applied to a cut rule immediately below ri and produces ri+1. A681

c!p-chain in σD is any sequence of c!p rules (ri)i<α with α ≤ ℓ(σD) such that:682

for all i ≥ 0, ri is in σD(i)683

either ri = ri+1 or ri ⇝ ri+1.684

▶ Remark 45. Let σ = {σD}D∈oPLL∞ be a ices. If r is a c!p rule in D, then there is a unique685

maximal c!p-chain (ri)i<α in σD with (α ≤ ℓ(σD) and) r = r0.686

The following lemma establishes a productivity result for the height-by-height mc-ices.687

▶ Lemma 46. If D ∈ wpPLL∞, then fσ∞(D) ∈ PLL∞.688

Proof. Let D be a weakly progressing coderivation. Since D is by assumption hyp-free and689

no cut-elimination rule introduces hyp, we can assume ℓ(σ∞
D) = ω. In what follows, we690

shorten σ∞
D (i) with Di, so D0 = D. We show a stronger statement: for any h ≥ 0 there is a691

nh ≥ 0 such that cf(Dnh
) has a hyp-free bar Vh of height greater than h. By definition, this692

will allow us to conclude that fσ∞(D) =
⊔

i cf(Di) is hyp-free.693

CVIT 2016

23:22 Infinitary cut-elimination via finite approximations

Let h ≥ 0. We define a procedure computing Vh divided into rounds, where at the j-th694

round we compute Vj
h. At round 0 we set V0

h to be a bar across D with height greater than695

h containing only rules in {ax, 1, c!p} (such a bar exists by weakly progressing). At the j-th696

round with j > 0, the procedure constructs Vj
h from Vj−1

h . It analyses the first node of Vj−1
h697

that has not been considered in previous rounds (giving priority to nodes with highest prefix698

order)6. Let rj be such a node. We only consider the case where rj is a c!p rule. We consider699

the c!p-chain (rj
i)i such that rj = rj

0 (which is unique by Remark 45). If there is a least i0700

such that rj
i0
⇝ rj

i0+1 (so that rj
i0+1 is produced by applying a principal cut-elimination step701

to rj
i0

, and rj
i = rj

i+1 for all i < i0), then we have three cases:702

If the cut-elimination step has shape c!p-vs-c!p then we set Vj
h := (Vj−1

h \ {rj}) ∪ {rj
i0+1}703

and we move to the next round.704

If the cut-elimination step has shape c!p-vs-?w then we set Vj
h := Vj−1

h \ {rj} and we705

move to the next round.706

Otherwise, the cut-elimination step has shape c!p-vs-?b. Let D′ be the coderivation of707

σD containing the rule rj
i0

, let ν be the node of D′ that is conclusion of rj
i0

, and let U j
h be708

a suitable bar of D′
ν at height > 0 containing only rules in {ax, 1, c!p}. This bar exists709

by weakly progressing of D and the fact that weak progressing is preserved under finite710

cut-elimination by Proposition 21. We set Vj
h := (Vj−1

h \ {rj}) ∪ U j
h and we move to the711

next round.712

If no such such rj
i0
⇝ rj

i0+1 exists (so rj
i = rj

i+1 for all i) we move to the next round.713

By construction, if the procedure terminates, it computes the set of nodes Vh such that,714

for some k ≥ 0 sufficiently large, Vh defines a bar across any Di in the sequence σD for all715

i ≥ k. This means that there exists nh ≥ k such that cf(Dnh
) contains that bar. So we have716

to show that the procedure terminates. Since bars are finite, this boils down to proving that717

there are only finitely many rounds. Suppose towards contradiction that this is not the case.718

This can only happen when there are infinitely many distinct c!p rules (ri)i in a branch Bj of719

D and infinitely many distinct ?b rules (r′
i)i in a branch B′

j of D such that in σ∞
D :720

1. each ri is eventually cut with r′
i,721

2. each ri is never cut with a c!p rule.722

Notice that the assumption that the rules in (r′
i)i belong to the same branch B′

j causes723

no loss of generality, since the height-by-height mc-ices reduces the cut ri-vs-r′
i before any724

other cut above these rules. By Item 1 B′
j is infinite, and by Item 2 it is eventually c!p-free,725

contradicting weakly progressing of D. ◀726

The following notion is the analogue of (multi)cut reduction sequences from [3].727

▶ Definition 47 (Cut-chains). Let σ = {σD}D∈oPLL∞ be a ices and let D ∈ oPLL∞. For728

any i, we write ri 7→ ri+1 if ri is a cut rule in σD(i), ri+1 is a cut rule in σD(i + 1), and729

σD(i) →cut σD(i + 1) is applied to ri producing ri+1. A cut-chain in σD is any sequence of730

cut rules (ri)i<α with α ≤ ℓ(σD) such that:731

for all i ≥ 0, ri is in σD(i)732

either ri = ri+1 or ri 7→ ri+1.733

▶ Remark 48. Let σ = {σD}D∈oPLL∞ be a ices , and let (ri)i be an infinite cut chain in σD734

such that (Ai, A⊥
i) is the pair of cut formulas of ri. There is i0 ≥ 0 such that, for all i ≥ i0,735

Ai is a !-formula (and A⊥
i is a ?-formula).736

6 More precisely, ν = a0 . . . an < c0 . . . cm = ν′ with ai, ci ∈ {1, 2} iff there is i0 ≤ m such that ai ≤ ci

for any 0 ≤ i ≤ i0 and ai0+1 < ci0+1.

M. Acclavio, G. Curzi and G. Guerrieri 23:23

▶ Remark 49. Any branch B in a progressing coderivation D contains at most (and hence737

exactly) one progressing !-thread. As a consequence, any infinite !-thread τ of a branch B738

in a progressing coderivation D must be progressing. Indeed, let τ and τ ′ be two infinite739

!-threads, and let us show that τ = τ ′. Since B is progressing, it contains infinitely many740

c!p rules (ri)i, so that there exists n ≥ 0 such that both τ and τ ′ contain formulas below ri.741

Since the conclusion of ri has exactly one !-formula and τ is infinite, both τ and τ ′ must742

contains that formula, so that τ = τ ′ by maximality of !-threads.743

▶ Lemma 50.744

1. If D ∈ wpPLL∞ (resp. D ∈ pPLL∞), then so is fσ∞(D).745

2. If D ∈ wpPLL∞ is finitely expandable, then so is fσ∞(D).746

Proof. Let us prove Item 1. Let D be a progressing open coderivation, and let us shorten747

σ∞
D (i) with Di, so D0 = D. By Proposition 21 we can assume that ℓ(σ∞

D) = ω.748

We want to show that for any infinite cut-chain (ri)i<ω in σ∞
D such that:749

(I) r0 is a cut rule with minimal height in D750

(II) π(ri) = a0a1 . . . ani
is the address of ri in Di (with ni ≤ ni+1),751

there exists 0 ≤ k0 ≤ n0 and an infinite family τ∗ := (Ci)k0≤i of occurrences of a !-formula752

satisfying the following properties:753

a τ∗
i := (Cj)k0≤j≤ni

is a !-thread in π(ri)754

b for any m ≥ 0 there is i such that τ∗
i has m progressing points.755

Notice that the property above allows us to conclude. Indeed, let B be an infinite branch756

of fσ∞(D). If B is in some Di, then it is progressing by Proposition 21. Otherwise, there757

exists an infinite cut-chain (ri)i<ω in σ∞
D satisfying Item a, Item b and B = {π(ri) | i ≥ 0}.758

By Item a and Item b there is an infinite family (Ci)n0≤i of occurrences of a !-formula that759

defines a progressing !-thread of B.760

So, let (ri)i<ω be a cut-chain with minimal height such that:761

the premises of ri are conclusions of the rules r′
i and r′′

i762

(Ai, A⊥
i) are the cut formulas of ri763

π(ri) = a0a1 . . . ani
is the address of ri in Di764

By Remark 48, we can assume w.l.o.g. that Ai = !B and A⊥
i = ?B⊥. It is easy to see that765

τ := (Ai)i is an infinite !-thread of some branch B′ of D and that τ ′ := (A⊥
i) is an infinite766

?-thread of some branch B′′ in D. Moreover, by Remark 49 and by progressing criterion of D,767

τ is progressing. This means that there are infinitely many i such that r′
i = r′′

i = c!p (so that768

Ai is the principal !-formula of r′
i and A⊥

i+1 is an auxiliary ?-formula of r′′
i) and ri 7→ ri+1.769

Let τ ′′ := (Ci)i be the progressing !-thread of B′′. Since r0 is a cut with minimal height, and770

the minimal height cut rules never decreases during cut-elimination, all cuts ri in the cut771

chain have minimal height. This means that the first formula of τ ′′, i.e., C0, is not a cut772

formula, and so it is in the end-sequent of D. It is easy to see that the cut-elimination rules773

never affect τ ′′ (and its progressing points) while pushing upward the cut rules. This means774

that we can construct τ ′′ satisfying the properties Item a and Item b.775

Let us now prove Item 2. Since fσ∞(D) is cut-free we only have to show that all of its776

infinite branches have only finitely many ?b rules each. Let D be a finitely expandable open777

coderivation, and let us shorten σ∞
D (i) with Di, so D0 = D. By Proposition 21 we can assume778

that ℓ(σ∞
D) = ω.779

We want to show that for any infinite cut-chain (ri)i<ω in σ∞
D such that:780

(I) r0 is a cut rule with minimal height in D781

(II) π(ri) = a0a1 . . . ani
is the address of ri in Di (with ni ≤ ni+1),782

CVIT 2016

23:24 Infinitary cut-elimination via finite approximations

the branch B = {π(ri) | i ≥ 0} of f(D) has only finitely many distinct ?b rules. Note that783

the property above allows us to conclude. Indeed, let B be an infinite branch of fσ∞(D). If B784

is in some Di, then it is finitely expandable by Proposition 21. Otherwise, there is an infinite785

cut-chain (ri)i<ω in σ∞
D such that B = {π(ri) | i ≥ 0}, so we are done by the above property.786

Thus, let (ri)i<ω be a cut-chain with minimal height such that:787

the premises of ri are conclusions of the rules r′
i and r′′

i788

(Ai, A⊥
i) are the cut formulas of ri789

π(ri) = a0a1 . . . ani is the address of ri in Di790

By Remark 48, we can assume w.l.o.g. that Ai = !B and A⊥
i = ?B⊥. It is easy to see that791

τ := (Ai)i is an infinite !-thread of some branch B′ of D and that τ ′ := (A⊥
i) is an infinite792

?-thread of some branch B′′ in D.793

Let us suppose towards contradiction that B has infinitely many ?b rules. This means that,794

for any k there is nk such that π(rnk
) contains k ?b rules. Since D is finitely expandable, there795

must be infinitely many i ≥ 0 such that ri 7→ ri+1 is obtained by applying the cut-elimination796

step c!p-vs-?b. But this would mean that the ?-thread τ ′ contains infinitely many principal797

rules for ?b rule, and so B′′ would contain infinitely many ?b rules, contradicting finite798

expandability of D. ◀799

▶ Proposition 51. Let D ∈ wrPLL∞ (resp. rPLL∞). Then fσ∞(D) admits a decomposition,800

and base(fσ∞(D)) = base(σ∞
D (n)) for some n ≥ 0.801

Proof. By Lemma 46 and Lemma 50, fσ∞(D) is a cut free (hyp-free) coderivation and finitely802

expandable coderivation. By Proposition 26 fσ∞(D) admits a decomposition border(D) =803

{v1, . . . , vk}. By continuity, this means that there is n ≥ 0 such that base(σ∞
D (n)) =804

base(fσ∞(D)). Note that base(σ∞
D (n)) exists by Propositions 21 and 26. ◀805

▶ Lemma 52. If D ∈ wrPLL∞ (resp. D ∈ rPLL∞), then so is fσ∞(D).806

Proof. We define a maximal and transfinite ices σ = {σD}D∈oPLL∞ preserving weak regularity,807

and show that this strategy can be “compressed” to a mc-ices, σ∗ = {σ∗
D}D∈oPLL∞ , along808

the lines of [29]. We then conclude since fσ∞ = fσ∗ by Proposition 29. So let D ∈ wrPLL∞.809

By induction on d = d(D) (which is finite by Lemma 43) we define σD = (Di)i such that:810

(a) For any limit ordinal λ ≤ ℓ(σD):811

(i)
⊔

i<λ D′
i = Dλ for some D′

i finite approximations of Di.812

(ii) If hi is the height of the cut reduced at the i-th step of σD then limi<λ(hi) = ∞.813

(b) Dℓ(σD) is cut free814

(c) Dℓ(σD) is weakly regular.815

If d = 0 then by Proposition 26 D is an open derivation, so that by Lemma 25 there816

is a maximal cut-elimination sequence that rewrites D to a normal open coderivation.817

In particular, the latter is also cut-free because D is hyp-free and so every cut can be818

eventually eliminated. We set σD to be such a cut-elimination sequence. By construction,819

σD satisfies Item ai-aii and Item b. Moreover, by Proposition 21 σD satisfies Item c820

If d > 0 then by Proposition 51 there is n ≥ 0 such that base(fσ∞(D)) = base(σ∞
D (n))

M. Acclavio, G. Curzi and G. Guerrieri 23:25

By construction σ∞
D (n) has the following structure:

cut(G′
i,G

′′
i) :=

G′
i

?∆i, !Bi

G′′
i

?B⊥
i , ?Σi, !Ai

cut
?∆i, ?Σi, !Ai


1≤i≤l

 G′′′
i

?Θi, !Ci


1≤i≤m

σ∞
D (n)

Γ

for some nwbs G′
i,G

′′
i ,G′′′

i . For any 1 ≤ i ≤ l, let σi be the mc-ices that applies only cut-
elimination steps for c!p-vs-c!p and that rewrites cut(G′

i,G
′′
i) to the following coderivation:

cut(G′
i(1),G′′

i (1))

∆i, Σi, Ai

cut(G′
i(2),G′′

i (2))

∆i, Σi, Ai

cut(G′
i(n),G′′

i (n))

∆i, Σi, Ai

...
c!p

?∆i, ?Σi, !Ai
c!p

...
c!p

?∆i, ?Σi, !Ai
c!p

?∆i, ?Σi, !Ai

where:

cut(G′
i(j),G′′

i (j)) :=
G′

i(j)

∆i, Bi

G′′
i (j)

B⊥
i , Σi, Ai

cut
∆i, Σi, Ai

By induction hypothesis, for any j ≥ 0 we have maximal transfinite icess σcut(G′
i
(j),G′′

i
(j))

and σG′′′
i

(j) satisfying the hypothesis. Since D is weakly regular the sets of sequences
Xi := {σcut(G′

i
(j),G′′

i
(j)) | j ≥ 0} and Yi := {σG′′′

i
(j) | j ≥ 0} can be assumed to be finite.

We set:

σD := (σ∞
D (i))0≤i≤n ·

m∏
i=1

∞∏
j=1

σG′′′
i

(j) ·
l∏

i=1
(σi ·

∞∏
j=1

σcut(G′
i
(j),G′′

i
(j)))

where σ′ · σ′′ denotes the concatenation of two sequences σ′ and σ′′. Let us now show that821

σD satisfies Item ai-aii. This follows from the induction hypothesis and the construction822

of σi (1 ≤ i ≤ l). Notice, indeed, that the i-th element of σi is the application of a823

cut-elimination step to a cut with shape c!p-vs-c!p and with height i. Clearly, Item b824

is satisfied. Concerning Item c, since the sets of sequences Xi and Yi are finite, using825

the induction hypothesis we have that if the sequences σXi
:=
∏∞

j=1 σG′′′
i

(j) and σYi
:=826

σi ·
∏∞

j=1 σcut(G′
i
(j),G′′

i
(j)) are applied to a weakly regular coderivation, their limit is a827

weakly regular coderivation. From this fact and Proposition 21 we can conclude that the828

limit of σD is weakly regular.829

Now, let lim(σD) be the limit of σD. We want to show by induction d that σ can be rewritten830

to a mc-ices σ∗ such that lim(σD) = fσ∗(D).831

CVIT 2016

23:26 Infinitary cut-elimination via finite approximations

The case d = 0 follows by construction of σ.832

Let us suppose d > 0. By induction hypothesis we have σ∗
cut(G′

i
(j),G′′

i
(j)) and σ∗

G′′′
i

(j) such833

that, for any j ≥ 0:834

lim
(

σcut(G′
i
(j),G′′

i
(j))

)
= fσ∗(cut(G′

i(j),G′′
i (j)))835

lim
(

σG′′′
i

(j)

)
= fσ∗(G′′′

i (j)).836

Let us now show that the sequences σi ·
∏∞

j=1 σ∗
cut(G′

i
(j),G′′

i
(j)) can be rewritten to a837

sequence with length ω with the same limit and preserving conditions Item a-c. We notice838

that:839

for any j ̸= j′, cut-elimination steps in σ∗
cut(G′

i
(j),G′′

i
(j)) commute with cut-elimination840

steps in σ∗
cut(G′

i
(j′),G′′

i
(j′))841

the j + 1-th cut-elimination step of σi commutes with all cut-elimination steps in842

σ(cut(G′
i(j′),G′′

i (j′))) with j′ < j.843

Since σi is has length ω, by the above observations, we define a sequence σ∗
i of length ω844

divided into stages, where each stage consists of a finite subsequence of reduction steps.845

At the n-th stage:846

we apply the n-th cut-elimination step of σi847

for any 1 ≤ j ≤ n we apply (the next available) n + 1 − j steps of σ∗
cut(G′

i
(j),G′′

i
(j)).848

In a similar way, for any 1 ≤ i ≤ m the reduction sequence σ∗
G′′′

i
(j) can be rewritten to a

sequence σ∗∗
i (D) of length ≤ ω (preserving the limit and conditions Item a-c). We obtain

a sequence of the following form:

(σ∞
D (i))0≤i≤n ·

m∏
i=1

σ∗∗
i ·

l∏
i=1

σ∗
i

Since any cut-elimination step in σ∗∗
i commutes with any cut-elimination step in σ∗

i , we849

can rewrite the above sequence to a sequence σ∗
D = (Di)i of length ≤ ω with the same850

limit and preserving conditions Item a-c. By definition, to prove that lim(σD) = fσ∗(D)851

it suffices to show that lim(σD) =
⊔

i cf(Di):852

By Item ai we have lim(σD) =
⊔

i D′
i for some D′

i approximations of Di so that,853

by Item b, we have lim(σD) =
⊔

i D′
i ⪯

⊔
i cf(Di).854

By Item aii we have
⊔

i cf(Di) ⪯ lim(σD).855

This shows that fσ∞(D) is weakly regular if D is. Therefore, if D ∈ wrPLL∞ then856

fσ∞(D) ∈ wrPLL∞ by Lemma 46 and Lemma 50.857

Concerning preservation of regularity, we apply the same reasoning, checking that the858

ices preserves periodicity of nwbs. ◀859

D Proofs of Section 6860

▶ Lemma 36. Let D ∈ oPLL∞. Then, {{D}} =
⋃

D′∈K(D){{D′}}.861

Proof. By Proposition 24, D =
⊔

D′∈K(D) D′.862

For the left-to-right inclusion, observe that for every n ∈ N there is D′
n ∈ K(D) such that

{{
⊔

D′∈K(D) D′}}n = {{D′
n}} ⊆

⋃
D′∈K(D){{D′}}. Therefore, by minimality of the union,

{{D}} =
⋃

n∈N
{{D}}n =

⋃
n∈N

{{
⊔

D′∈K(D)

D′}}n ⊆
⋃

D′∈K(D)

{{D′}}.

As for the converse inclusion, we have that D′ ⪯ D′′ implies {{D′}} ⊆ {{D′′}}. Hence, for863

all D′ ∈ K(D), since D′ ⪯
⊔

D′∈K(D) D′ = D, we have {{D′}} ⊆ {{D}}. By minimality of the864

union,
⋃

D′∈K(D){{D′}} ⊆ {{D}}. ◀865

M. Acclavio, G. Curzi and G. Guerrieri 23:27

▶ Theorem 37 (Soundness). 1. Let D ∈ oPLL∞. If D →cut D′, then {{D}} = {{D′}}.866

2. Let D ∈ oPLL∞. If σ is a mc-ices, then {{D}} = {{fσ(D)}}.867

Proof. 1. By straightforward inspection of the cut-elimination steps for oPLL∞.868

2. By definition of mc-ices, for any D′ ∈ K(D) we have D′ →∗
cut fσ(D′), so {{D′}} =869

{{fσ(D′)}} by Theorem 37.1. By Proposition 24, D =
⊔

D′∈K(D) D′. By continuity of fσ,870

we have fσ(D) =
⊔

D′∈K(D) fσ(D′). Therefore, by Lemma 36 we have:871

{{D}} =
⋃

D′∈K(D){{D′}} =
⋃

D′∈K(D){{fσ(D′)}} = {{
⊔

D′∈K(D) fσ(D′)}} = {{fσ(D)}}.◀872

▶ Corollary 38. Let D ∈ wpPLL∞. Then {{D}} ̸= ∅.873

Proof. If D ∈ wpPLL∞ is a cut-free coderivation, then weak-progressing ensures the existence874

of a bar V containing conclusions of rules in {ax, 1, c!p}. By weak König’s lemma, ⌊D⌋V is875

finite. Then, we prove by induction on ⌊D⌋V that there is n ≥ 0 such that {{⌊D⌋V}}n ̸= ∅,876

so that we conclude ∅ ≠ {{⌊D⌋V}}n ⊆ {{D}}n ⊆ {{D}}. As for the base case, notice that the877

interpretation of any coderivation ending with the c!p contains the element ([⃗], []), so it is878

never empty. The inductive steps are straightforward.879

If D contains cut-rules, then {{D}} = {{fσ(D)}} by Theorem 37. Since fσ(D) is cut-free,880

we conclude {{D}} ̸= ∅ by the above reasoning. ◀881

CVIT 2016

23:28 Infinitary cut-elimination via finite approximations

Γ, A
f!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

Γ, A
?d

?Γ, A
!p

?Γ, !A

∆, A⊥, ?A⊥
?d

∆, ?A⊥, ?A⊥
?c

∆, ?A⊥
cut

?Γ, ∆

Γ, A
?d

?Γ, A
!p

?Γ, !A

Γ, A
?d

?Γ, A
!p

?Γ, !A
∆, A⊥, ?A⊥

?d
∆, ?A⊥, ?A⊥

cut
?Γ, ∆, ?A⊥

cut
?Γ, ?Γ, ∆

?c
?Γ, ∆

Γ, A
?d

?Γ, A
!p

?Γ, !A

Γ, A
?d

?Γ, A
!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
?d

?Γ, ∆, ?A⊥
cut

?Γ, ?Γ, ∆
?c

?Γ, ∆

Γ, A

Γ, A
f!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
?b

?Γ, ∆

Γ, A

Γ, A
?d

?Γ, A
!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
?d

?Γ, ?Γ, ∆
?c

?Γ, ∆

♠

f!p-vs-?b

f!p-vs-?c

commutative step

f!p-vs-?d

♠

Figure 15 Commutation of the f!p-vs-?b step with (·)♠.

M. Acclavio, G. Curzi and G. Guerrieri 23:29

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A

{
D′

i

A⊥, ∆, B

}
i∈Nib!p

?A⊥, ?∆, !B
cut

?Γ, ?∆, !B

→cut


Di

Γ, A

D′
i

A⊥, ∆, B
cut

Γ, ∆, B


i∈Nib!p

?Γ, ?∆, !B

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A
∆

?w
∆, ?A⊥

cut
?Γ, ∆

→cut
∆

?w
?Γ, ∆

{
Di

Γ, A

}
i∈Nib!p

?Γ, !A
∆, A⊥, ?A⊥

?b
∆, ?A⊥

cut
?Γ, ∆

→cut
D0

Γ, A

{
Di+1

Γ, A

}
i∈Nib!p

?Γ, !A ∆, A⊥, ?A⊥
cut

?Γ, ∆, A⊥
cut

Γ, ?Γ, ∆
?b

?Γ, ∆

Figure 16 Exponential cut-elimination steps in nuPLL.

CVIT 2016

	1 Introduction
	2 Preliminary notions
	2.1 Derivations and coderivations

	3 Parsimonious Linear Logic
	4 Non-wellfounded Parsimonious Linear Logic
	4.1 From infinitely branching proofs to non-wellfounded proofs
	4.2 Consistency via a progressing criterion
	4.3 Recovering (weak forms of) regularity

	5 Continuous cut-elimination
	5.1 Approximating coderivations
	5.2 Domain-theoretic approach to continuous cut-elimination

	6 Relational semantics for non-wellfounded proofs
	7 Conclusion and future work
	A Appendix of sec:parsimoniousLogic
	B Proofs of sec:coder
	C Proofs of sec:ccutelim
	D Proofs of sec:semantics

