Non-uniform complexity via non-wellfounded proofs

CSL 2023

Warsaw, 15 February 2023

Gianluca Curzi¹ Anupam Das¹

¹University of Birmingham, UK

Follow up of a previous work [Curzi&Das 2022]:

- Cyclic proof system CB characterising FP (functions computable in polytime)
- CB is a circular version of B, an algebra of functions based on the principles of implicit complexity [Bellantoni&Cook 92]
- ► Alternative approach to implicit complexity: Cyclic Implicit Complexity

- Cyclic proofs are special non-wellfounded proofs admitting finite presentation
- Finite presentability \approx computational uniformity
- Relaxing finite presentability ~> relaxing uniformity
- Non-wellfounded proof system nuB for FP/poly (functions computable in non-uniform polytime)

Follow up of a previous work [Curzi&Das 2022]:

- Cyclic proof system CB characterising FP (functions computable in polytime)
- CB is a circular version of B, an algebra of functions based on the principles of implicit complexity [Bellantoni&Cook 92]
- ► Alternative approach to implicit complexity: Cyclic Implicit Complexity

- Cyclic proofs are special non-wellfounded proofs admitting finite presentation
- \blacktriangleright Finite presentability \approx computational uniformity
- Relaxing finite presentability ~> relaxing uniformity
- Non-wellfounded proof system nuB for FP/poly (functions computable in non-uniform polytime)

Follow up of a previous work [Curzi&Das 2022]:

- Cyclic proof system CB characterising FP (functions computable in polytime)
- CB is a circular version of B, an algebra of functions based on the principles of implicit complexity [Bellantoni&Cook 92]
- ► Alternative approach to implicit complexity: Cyclic Implicit Complexity

- Cyclic proofs are special non-wellfounded proofs admitting finite presentation
- Finite presentability \approx computational uniformity
- Relaxing finite presentability ~> relaxing uniformity
- Non-wellfounded proof system nuB for FP/poly (functions computable in non-uniform polytime)

Follow up of a previous work [Curzi&Das 2022]:

- Cyclic proof system CB characterising FP (functions computable in polytime)
- CB is a circular version of B, an algebra of functions based on the principles of implicit complexity [Bellantoni&Cook 92]
- ► Alternative approach to implicit complexity: Cyclic Implicit Complexity

- Cyclic proofs are special non-wellfounded proofs admitting finite presentation
- Finite presentability \approx computational uniformity
- Relaxing finite presentability ~>> relaxing uniformity
- Non-wellfounded proof system nuB for FP/poly (functions computable in non-uniform polytime)

Q Cyclic Implicit Complexity Part I: uniform computation

S Cyclic Implicit Complexity Part II: non-uniform computation

Non-wellfounded proofs

Non-wellfounded proofs = infinitary generalisations of the notion of proof

Progressiveness condition = global condition to guarantee **consistency**

Non-wellfounded proofs

Non-wellfounded proofs = infinitary generalisations of the notion of proof

Progressiveness condition = global condition to guarantee **consistency**

Cyclic proofs

Cyclic proofs = regular non-wellfounded proofs

Regular tree = only **finitely** many distinct subtrees

Cyclic proofs admit a finite, "circular" presentation:

Cyclic proofs

Cyclic proofs = regular non-wellfounded proofs

Regular tree = only **finitely** many distinct subtrees

Cyclic proofs admit a finite, "circular" presentation:

Cyclic proofs as programs

• Only one formula N corresponding to \mathbb{N}

Inference rules correspond to algorithmic instructions

The cyclic proof

corresponds to a program computing a function

$$f_{\mathcal{D}}: \underbrace{\mathbb{N} \times \ldots \times \mathbb{N}}_{n} \to \mathbb{N}$$

Cyclic proofs as programs

• Only one formula N corresponding to \mathbb{N}

- Inference rules correspond to algorithmic instructions
- The cyclic proof

corresponds to a program computing a function

$$f_{\mathcal{D}}: \underbrace{\mathbb{N} \times \ldots \times \mathbb{N}}_{n} \to \mathbb{N}$$

An example

Example: primitive recursion

 $f(0, \vec{y}) = g(\vec{y})$ $f(x + 1, \vec{y}) = h(x, \vec{y}, f(x, \vec{y}))$

Computational meaning:

- regularity = uniformity, computability criterion
- progressiveness = totality, termination criterion

An example

Example: primitive recursion

 $f(0, \vec{y}) = g(\vec{y})$ $f(x + 1, \vec{y}) = h(x, \vec{y}, f(x, \vec{y}))$

Computational meaning:

regularity = uniformity, computability criterion

progressiveness = totality, termination criterion

An example

Example: primitive recursion

$$f(0, \vec{y}) = g(\vec{y})$$

$$f(x+1), \vec{y}) = h(x, \vec{y}, f(x), \vec{y})$$

Computational meaning:

- regularity = uniformity, computability criterion
- progressiveness = totality, termination criterion

Ocyclic Implicit Complexity Part I: uniform computation

Operation State State

ICC and safe recursion

- Implicit computational complexity (ICC) = characterise complexity classes by means of languages/calculi without explicit reference to machine models or external resource bounds.
- Function algebra B characterising **FP** in the style of ICC [Bellantoni&Cook 92].
- Function arguments partitioned into normal and safe:

 $f(x_1,\ldots,x_n;y_1,\ldots,y_m)$

Safe recursion:

 $f(0, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$ $f(x+1, \vec{x}; \vec{y}) = h(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$

Idea. Recursive calls only in the safe zone:

ICC and safe recursion

- Implicit computational complexity (ICC) = characterise complexity classes by means of languages/calculi without explicit reference to machine models or external resource bounds.
- Function algebra B characterising **FP** in the style of ICC [Bellantoni&Cook 92].
- Function arguments partitioned into normal and safe:

 $f(x_1,\ldots,x_n;y_1,\ldots,y_m)$

■ Safe recursion:

$$f(0, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(x + 1, \vec{x}; \vec{y}) = h(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

Idea. Recursive calls only in the safe zone:

Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni&Cook, 1992]

$$f(0, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(x + 1, \vec{x}; \vec{y}) = h(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

Idea: $\Box N$ vs N reflects normal vs safe distinction of function arguments

Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni&Cook, 1992]

$$f(0, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(x + 1, \vec{x}; \vec{y}) = h(x, \vec{x}; \vec{y}, f(x, \vec{x}; \vec{y}))$$

Idea: $\Box N$ vs N reflects normal vs safe distinction of function arguments

Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni&Cook, 1992]

$$f(0, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$
$$f((x+1), \vec{x}; \vec{y}) = h(x, \vec{x}; \vec{y}, f((x), \vec{x}; \vec{y}))$$

Idea: $\Box N$ vs N reflects normal vs safe distinction of function arguments

Characterising the polynomial time (**FP**)

Cyclic proof system CB = regular and progressing non-wellfounded proofs satisfy the following global proof-theoretic conditions:

► Safety:

- maintain globally the $\Box N$ vs N distinction
- only safe recursion schemes are representable

Left-leaning: prevents **nested** safe recursion:

 $\exp(\mathbf{0}; y) = y + 1$

 $\exp(x+1; y) = \exp(x; \exp(x; y))$

source of exponential blow up!

Theorem [Curzi&Das, 2022]:

- **•** the functions representable in CB are exactly those in **FP**.
- the functions representable in CB without the left-leaning condition are exactly those in FELEMENTARY.

Characterising the polynomial time (**FP**)

Cyclic proof system CB = regular and progressing non-wellfounded proofs satisfy the following global proof-theoretic conditions:

► Safety:

- maintain globally the $\Box N$ vs N distinction
- only safe recursion schemes are representable

• Left-leaning: prevents **nested** safe recursion:

 $\exp(\mathbf{0};y)=y+1$

 $\exp(x+1; y) = \exp(x; \exp(x; y))$

source of exponential blow up!

Theorem [Curzi&Das, 2022]:

- **•** the functions representable in CB are exactly those in **FP**.
- the functions representable in CB without the left-leaning condition are exactly those in FELEMENTARY.

Characterising the polynomial time (**FP**)

Cyclic proof system CB = regular and progressing non-wellfounded proofs satisfy the following global proof-theoretic conditions:

► Safety:

- maintain globally the $\Box N$ vs N distinction
- only safe recursion schemes are representable

• Left-leaning: prevents **nested** safe recursion:

 $\exp(0; y) = y + 1$ $\exp(x + 1; y) = \exp(x; \exp(x; y))$

source of exponential blow up!

Theorem [Curzi&Das, 2022]:

- ▶ the functions representable in CB are exactly those in **FP**.
- the functions representable in CB without the left-leaning condition are exactly those in FELEMENTARY.

2 Cyclic Implicit Complexity Part I: uniform computation

Occlic Implicit Complexity Part II: non-uniform computation

Non-uniform polynomial time (**FP**/**poly**)

FP/poly = class of functions computable in <u>non-uniform</u> polynomial time

Theorem: $f \in \mathbf{FP}/\mathbf{poly}$ iff there are polynomial size circuits computing f.

 $FP(\mathbb{R})=class$ of functions computable in polynomial time by a Turing machine "querying bits of real numbers"

Theorem [Folklore]: $FP/poly = FP(\mathbb{R})$.

Non-uniform polynomial time (**FP**/**poly**)

FP/poly = class of functions computable in <u>non-uniform</u> polynomial time

Theorem: $f \in \mathbf{FP}/\mathbf{poly}$ iff there are polynomial size circuits computing f.

 $FP(\mathbb{R}) = class$ of functions computable in polynomial time by a Turing machine "querying bits of real numbers"

Theorem [Folklore]: $FP/poly = FP(\mathbb{R})$.

Non-wellfounded proofs as non-uniform polytime programs

 $\label{eq:cyclic proofs} Cyclic \ proofs = \textbf{regular} \ non-wellfounded \ proofs$

regularity pprox computability, uniformity

Idea: relaxing regularity to represent real numbers and characterise $\mathsf{FP}(\mathbb{R})$

weak <code>regularity</code> $~\approx~$ <code>computability</code> + <code>query</code> on bits of real numbers

... but since $\mathsf{FP}(\mathbb{R}) = \mathsf{FP}/\mathsf{poly}$ then:

weak regularity \approx non-uniformity

Non-wellfounded proofs as non-uniform polytime programs

 $\label{eq:cyclic proofs} Cyclic \ proofs = \textbf{regular} \ non-wellfounded \ proofs$

regularity pprox computability, uniformity

Idea: relaxing regularity to represent real numbers and characterise $\mathsf{FP}(\mathbb{R})$

weak <code>regularity</code> $~\approx~$ <code>computability</code> + <code>query</code> on bits of real numbers

... but since $\mathsf{FP}(\mathbb{R}) = \mathsf{FP}/\mathsf{poly}$ then:

weak regularity \approx non-uniformity

Non-wellfounded proofs as non-uniform polytime programs

 $\label{eq:cyclic proofs} Cyclic \ proofs = \textbf{regular} \ non-wellfounded \ proofs$

regularity pprox computability, uniformity

Idea: relaxing regularity to represent real numbers and characterise $FP(\mathbb{R})$

weak <code>regularity</code> $~\approx~$ <code>computability</code> + <code>query</code> on bits of real numbers

... but since $FP(\mathbb{R}) = FP/poly$ then:

weak regularity \approx non-uniformity

Regular proof = finitely many distinct subproofs.

Example:

Weakly regular proof = finitely many distinct subproofs containing the inference rules \dots

Example:

Weakly regular proof = finitely many distinct subproofs containing the inference rules \dots

Example:

Idea: weak regularity implies $\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n, \ldots$ are finitely many distinct.

Weakly regular proof = finitely many distinct subproofs containing the inference rules \dots

Example:

... which encodes a real number $\mathbf{r} = \langle \mathbf{r}(0), \mathbf{r}(1), \ldots, \mathbf{r}(n), \ldots \rangle$

Characterising $\mathbf{FP}/\mathbf{poly}$

Non-wellfounded proof system nuB = weakly regular version of CB.

Theorem [Curzi&Das 2023]: The functions representable in nuB are exactly those in FP/poly.

Idea of the proof: weak regularity allows a decomposition result

 $\mathsf{nuB}=\mathsf{CB}(\mathbb{R})=\mathsf{FP}(\mathbb{R})=\mathsf{FP}/\mathsf{poly}$

Characterising $\mathbf{FP}/\mathbf{poly}$

Non-wellfounded proof system nuB = weakly regular version of CB.

Theorem [Curzi&Das 2023]: The functions representable in nuB are exactly those in FP/poly.

Idea of the proof: weak regularity allows a decomposition result

 $nuB = CB(\mathbb{R}) = FP(\mathbb{R}) = FP/poly$

Conclusion and future directions

- Ongoing work: non-wellfounded approaches to FP/poly in the setting of linear logic.
- **Future work:** find proof-theoretic restrictions on nuB to characterise BPP (bounded-error probabilistic polynomial time).

Conclusion and future directions

 Ongoing work: non-wellfounded approaches to FP/poly in the setting of linear logic.

■ **Future work:** find proof-theoretic restrictions on nuB to characterise BPP (bounded-error probabilistic polynomial time).

Thank you! Questions?

Appendix

A Non-uniform complexity classes

5 The non-wellfounded proof system nuB

Proof-theoretic conditions defining nuB

Non-uniform complexity classes

- **FP** = class of functions computable in polynomial time on a Turing machine.
- **FP**/**poly** is an extension of **FP** that intuitively has access to a 'small' amount of *advice*, determined only by the length of the input.
- **FP**/**poly** = class of functions $f(\vec{x})$ for which there exists some strings $\alpha_{\vec{n}} \in \{0,1\}^*$ and a function $f'(x, \vec{x}) \in \mathbf{FP}$ with:
 - ► $|\alpha_{\vec{n}}|$ is polynomial in \vec{n} .
 - $f(\vec{x}) = f'(\alpha_{|\vec{x}|}, \vec{x}).$
- Note, in particular, that **FP**/**poly** admits undecidable problems. E.g. the function f(x) = 1 just if |x| is the code of a halting Turing machine (and 0 otherwise) is in **FP**/**poly**. Indeed, the point of the class **FP**/**poly** is to rather characterise a more non-uniform notion of computation.

Theorem: $f(\vec{x}) \in \mathbf{FP}/\mathbf{poly}$ iff there are poly-size circuits computing $f(\vec{x})$.

■ The class **FP**(ℝ) consists of just the functions computable in polynomial time by a Turing machine with access to oracles from:

$$\mathbb{R} := \{f(x) : \mathbb{N} \to \{0,1\} \mid |x| = |y| \implies f(x) = f(y)\}$$

- Note that the notation \mathbb{R} is suggestive here, since its elements are essentially maps from lengths/positions to Booleans, and so may be identified with Boolean streams.
- **Theorem** [Folklore]: $FP/poly = FP(\mathbb{R})$.

The non-wellfounded proof system nuB

Rules for the non-wellfounded proof system nuB

Semantics of non-wellfounded proofs for nuB

Proof-theoretic conditions defining nuB

Progressiveness

Example. A cyclic proof \mathcal{D} representing a partial function:

$$\operatorname{cut}_{N}^{S_{0}} \frac{\overline{N \Rightarrow N} \quad \operatorname{cut}_{N} \overline{\square N, N \Rightarrow N}}{\square N, N \Rightarrow N}$$

$$f_{\mathcal{D}}(\mathbf{x}; y) := f_{\mathcal{D}}(\mathbf{x}; s_0 y)$$

- Progressive proof = every infinite branch contains a □-*thread* with infinitely many principal formulas of the rule cond_□.
- Progressiveness \sim totality

Safety condition

Example. Modalities are not enough to enforce stratification in our setting.
 E.g. cyclic progressing proof D for primitive recursion (on notation):

$$f_{\mathcal{D}}(0, \vec{x};) = f_{\mathcal{D}_0}(\vec{x};)$$

$$f_{\mathcal{D}}(s_i x, \vec{x};) = f_{\mathcal{D}_1}(x, \vec{x}, f(x, \vec{x});)$$

- Safe proof = any infinite branch crosses finitely many cut_□ rules.
- Safety condition rules out non-safe recursion schemes.

Safety condition induces a simpler -thread structure

Left-leaning condition

- Safety condition is not enough! We can express nested safe recursion.
- **Example.** A cyclic progressing safe proof for the **exponential** function $exp(x)(y) = 2^{2^{|x|}} \cdot y$:

• Left-leaning proof = any branch goes right at a cut_N rule only finitely often.

Hofmann's type system SLR [Hofmann 97]

• Two function spaces: $\Box A \rightarrow B \pmod{a}$ and $A \multimap B \binom{linear}{l}$.

• Safe linear recursion operator (with $A \square$ -free):

$$\operatorname{rec}_A : \Box N \to \underbrace{(\Box N \to A \multimap A)}_{k} \to A \to A$$

where $f(x) = \operatorname{rec}_A(x, h, g)$ means:

$$\begin{array}{rcl} f(0) & = & g \\ f(s_0 x) & = & h(x, f(x)) \\ f(s_1 x) & = & h(x, f(x)) \end{array}$$

• terms $t : (\Box N)^n \to N^m \multimap N$ represent *exactly* the functions in **FP**.

Nesting and higher-order recursion

• Nested recursion in SLR if higher-order types are not handled linearly:

$$\exp(x;y) = \operatorname{rec}_A(x,h,g)(y)$$

- **Takeaway**. Type n cyclic proofs can represent type n+1 recursion [Das 21].
- Left-leaning is a linearity condition: it prevents duplication of recursive calls, and hence their nesting.