Non-uniform complexity via non-wellfounded proofs

CSL 2023

Warsaw, 15 February 2023

Gianluca Curzi ${ }^{1}$ Anupam Das ${ }^{1}$
${ }^{1}$ University of Birmingham, UK

Introduction

Follow up of a previous work [Curzi\&Das 2022]:

- Cyclic proof system CB characterising FP (functions computable in polytime)
- CB is a circular version of B, an algebra of functions based on the principles of implicit complexity [Bellantoni\&Cook 92]
\rightarrow Alternative approach to implicit complexity: Cyclic Implicit Complexity

This talk in a nutshell:

- Cy-lic proofs are special non-wellfounded proofs admitting finite presentation
- Finite presentability \approx computational uniformity

Introduction

Follow up of a previous work [Curzi\&Das 2022]:

- Cyclic proof system CB characterising FP (functions computable in polytime)
- CB is a circular version of B, an algebra of functions based on the principles of implicit complexity [Bellantoni\&Cook 92]
- Alternative approach to implicit complexity: Cyclic Implicit Complexity

This talk in a nutshell:

- Cydic proofs ame special non-wellfounded proofs admitting finite presentation
- Finite presentability \approx computational uniformity
- Réaxing finite presentablty malaxing uniformity
- Non-wellfounded proof system nuB for FP/polly (functions computable in non-uniform polytime)

Introduction

Follow up of a previous work [Curzi\&Das 2022]:

- Cyclic proof system CB characterising FP (functions computable in polytime)
- CB is a circular version of B, an algebra of functions based on the principles of implicit complexity [Bellantoni\&Cook 92]
- Alternative approach to implicit complexity: Cyclic Implicit Complexity

This talk in a nutshell:

- Cyclic proofs are special non-wellfounded proofs admitting finite presentation
- Finite presentability \approx computational uniformity
$>$ Relaxing finite presentabilty \rightsquigarrow relaxing uniformity
- Non-wellfounded proof system nuB for FP/poly (functions computable in non-uniform polytime)

Introduction

Follow up of a previous work [Curzi\&Das 2022]:

- Cyclic proof system CB characterising FP (functions computable in polytime)
- CB is a circular version of B, an algebra of functions based on the principles of implicit complexity [Bellantoni\&Cook 92]
- Alternative approach to implicit complexity: Cyclic Implicit Complexity

This talk in a nutshell:

- Cyclic proofs are special non-wellfounded proofs admitting finite presentation
- Finite presentability \approx computational uniformity
- Relaxing finite presentabilty \rightsquigarrow relaxing uniformity
- Non-wellfounded proof system nuB for FP/poly (functions computable in non-uniform polytime)
(1) Cyclic Proofs and Computation

(2) Cyclic Implicit Complexity Part I: uniform computation

(3) Cyclic Implicit Complexity Part II: non-uniform computation

Non-wellfounded proofs

Non-wellfounded proofs = infinitary generalisations of the notion of proof

VS

Non-wellfounded proofs

Non-wellfounded proofs = infinitary generalisations of the notion of proof

Progressiveness condition = global condition to guarantee consistency

Cyclic proofs

Cyclic proofs $=$ regular non-wellfounded proofs

Regular tree $=$ only finitely many distinct subtrees

Cyclic proofs

Cyclic proofs $=$ regular non-wellfounded proofs

Regular tree $=$ only finitely many distinct subtrees

Cyclic proofs admit a finite, "circular" presentation:

Cyclic proofs as programs

- Only one formula N corresponding to \mathbb{N}
- Inference rules correspond to algorithmic instructions
corresponds to a program computing a function

Cyclic proofs as programs

- Only one formula N corresponding to \mathbb{N}
- Inference rules correspond to algorithmic instructions
- The cyclic proof

corresponds to a program computing a function

$$
f_{\mathcal{D}}: \underbrace{\mathbb{N} \times \ldots \times \mathbb{N}}_{n} \rightarrow \mathbb{N}
$$

An example

Example: primitive recursion

$$
\begin{aligned}
f(0, \vec{y}) & =g(\vec{y}) \\
f(x+1, \vec{y}) & =h(x, \vec{y}, f(x, \vec{y}))
\end{aligned}
$$

Computational meaning:

- regularity $=$ uniformity, computability criterion
> progressiveness $=$ totality, termination criterion

An example

Example: primitive recursion

$$
\begin{aligned}
f(0, \vec{y}) & =g(\vec{y}) \\
f(x+1, \vec{y}) & =h(x, \vec{y}, f(x, \vec{y}))
\end{aligned}
$$

Computational meaning:

- regularity $=$ uniformity, computability criterion
\Rightarrow progressiveness $=$ totality, termination criterion

An example

Example: primitive recursion

Computational meaning:

- regularity $=$ uniformity, computability criterion
- progressiveness $=$ totality, termination criterion

(1) Cyclic Proofs and Computation

(2) Cyclic Implicit Complexity Part I: uniform computation

ICC and safe recursion

- Implicit computational complexity (ICC) = characterise complexity classes by means of languages/calculi without explicit reference to machine models or external resource bounds.
- Function algebra B characterising FP in the style of ICC [Bellantoni\&Cook 92].
- Function arguments partitioned into normal and safe:

$$
f\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)
$$

Idea. Recursive calls only in the safe zone:

ICC and safe recursion

- Implicit computational complexity (ICC) = characterise complexity classes by means of languages/calculi without explicit reference to machine models or external resource bounds.
- Function algebra B characterising FP in the style of ICC [Bellantoni\&Cook 92].
- Function arguments partitioned into normal and safe:

$$
f\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{m}\right)
$$

- Safe recursion:

$$
\begin{aligned}
f(0, \vec{x} ; \vec{y}) & =g(\vec{x} ; \vec{y}) \\
f(x+1, \vec{x} ; \vec{y}) & =h(x, \vec{x} ; \vec{y}, f(x, \vec{x} ; \vec{y}))
\end{aligned}
$$

Idea. Recursive calls only in the safe zone:

Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni\&Cook, 1992]

$$
\begin{aligned}
f(0, \vec{x} ; \vec{y}) & =g(\vec{x} ; \vec{y}) \\
f(x+1, \vec{x} ; \vec{y}) & =h(x, \vec{x} ; \vec{y}, f(x, \vec{x} ; \vec{y}))
\end{aligned}
$$

Idea: $\square N$ vs N reflects normal vs safe distinction of function arguments

Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni\&Cook, 1992]

$$
\begin{aligned}
f(0, \vec{x} ; \vec{y}) & =g(\vec{x} ; \vec{y}) \\
f(x+1, \vec{x} ; \vec{y}) & =h(x, \vec{x} ; \vec{y}, f(x, \vec{x} ; \vec{y}))
\end{aligned}
$$

Idea: $\square N$ vs N reflects normal vs safe distinction of function arguments

Cyclic proofs as polytime programs

Example: safe recursion [Bellantoni\&Cook, 1992]

$$
\begin{aligned}
f(0, \vec{x} ; \vec{y}) & =g(\vec{x} ; \vec{y}) \\
f(x+1), \vec{x} ; \vec{y}) & =h(x, \vec{x} ; \vec{y}, f(\circledast, \vec{x} ; \vec{y}))
\end{aligned}
$$

Idea: $\square N$ vs N reflects normal vs safe distinction of function arguments

Characterising the polynomial time (FP)

Cyclic proof system $\mathrm{CB}=$ regular and progressing non-wellfounded proofs satisfy the following global proof-theoretic conditions:

- Safety:
- maintain globally the $\square N$ vs N distinction
- only safe recursion schemes are representable
- Left-leaning: prevents nested safe recursion:
source of exponential blow up!

Theorem [Curzi\&Das, 2022]
\Rightarrow the functions representable in CB are exactly those in FP
the functions representable in CB without the left-leaning condition are exactly those in FELEMENTARY.

Characterising the polynomial time (FP)

Cyclic proof system $\mathrm{CB}=$ regular and progressing non-wellfounded proofs satisfy the following global proof-theoretic conditions:

- Safety:
- maintain globally the $\square N$ vs N distinction
- only safe recursion schemes are representable
- Left-leaning: prevents nested safe recursion:

$$
\begin{aligned}
\exp (0 ; y) & =y+1 \\
\exp (x+1 ; y) & =\exp (x ; \exp (x ; y))
\end{aligned}
$$

source of exponential blow up!

Theorem [Currii\&Das, 2022]

- the functions representable in $C B$ are exactly those in $F P$
$>$ the functions representable in CB without the left-leaning condition are exactly those in FELEMENTARY.

Characterising the polynomial time (FP)

Cyclic proof system $\mathrm{CB}=$ regular and progressing non-wellfounded proofs satisfy the following global proof-theoretic conditions:

- Safety:
- maintain globally the $\square N$ vs N distinction
- only safe recursion schemes are representable
- Left-leaning: prevents nested safe recursion:

$$
\begin{aligned}
\exp (0 ; y) & =y+1 \\
\exp (x+1 ; y) & =\exp (x ; \exp (x ; y))
\end{aligned}
$$

source of exponential blow up!

Theorem [Curzi\&Das, 2022]:

- the functions representable in CB are exactly those in FP.
- the functions representable in CB without the left-leaning condition are exactly those in FELEMENTARY.

(1) Cyclic Proofs and Computation

(2) Cyclic Implicit Complexity Part I: uniform computation

(3) Cyclic Implicit Complexity Part II: non-uniform computation

Non-uniform polynomial time (FP/poly)

FP/poly = class of functions computable in non-uniform polynomial time

Theorem: $f \in \mathbf{F P} /$ poly iff there are polynomial size circuits computing f.

Non-uniform polynomial time (FP/poly)

FP/poly = class of functions computable in non-uniform polynomial time

Theorem: $f \in \mathbf{F P} /$ poly iff there are polynomial size circuits computing f.
$\operatorname{FP}(\mathbb{R})=$ class of functions computable in polynomial time by a Turing machine "querying bits of real numbers"

Theorem [Folklore]: $\mathbf{F P} /$ poly $=\mathbf{F P}(\mathbb{R})$.

Non-wellfounded proofs as non-uniform polytime programs
Cyclic proofs = regular non-wellfounded proofs

$$
\text { regularity } \approx \text { computability, uniformity }
$$

Idea: relaxing regularity to represent real numbers and characterise $\mathbf{F P}(\mathbb{R})$

Non-wellfounded proofs as non-uniform polytime programs
Cyclic proofs $=$ regular non-wellfounded proofs

```
regularity \approx computability, uniformity
```

Idea: relaxing regularity to represent real numbers and characterise $\mathbf{F P}(\mathbb{R})$

```
weak regularity }\approx\mathrm{ computability + query on bits of real numbers
```

Non-wellfounded proofs as non-uniform polytime programs
Cyclic proofs $=$ regular non-wellfounded proofs

```
regularity }\approx\mathrm{ computability, uniformity
```

Idea: relaxing regularity to represent real numbers and characterise $\mathbf{F P}(\mathbb{R})$

```
weak regularity }\approx\mathrm{ computability + query on bits of real numbers
```

\ldots but since $\mathbf{F P}(\mathbb{R})=\mathbf{F P} /$ poly then:

$$
\text { weak regularity } \approx \text { non-uniformity }
$$

Weak regularity

Regular proof $=$ finitely many distinct subproofs.

Weak regularity

Weakly regular proof $=$ finitely many distinct subproofs containing the inference rules

Weak regularity

Weakly regular proof $=$ finitely many distinct subproofs containing the inference rules

Example:

Idea: weak regularity implies $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{n}, \ldots$ are finitely many distinct.

Weak regularity

Weakly regular proof $=$ finitely many distinct subproofs containing the inference rules....

Example:

\ldots which encodes a real number $\mathbf{r}=\langle\mathbf{r}(0), \mathbf{r}(1), \ldots, \mathbf{r}(n), \ldots\rangle$

Characterising FP/poly

Non-wellfounded proof system nuB $=$ weakly regular version of $C B$.

Theorem [Curzi\&Das 2023]: The functions representable in nuB are exactly those in FP/poly.

Idea of the proof: weak regularity allows a decomposition result

Characterising FP/poly

Non-wellfounded proof system nuB $=$ weakly regular version of $C B$.

Theorem [Curzi\&Das 2023]: The functions representable in nuB are exactly those in FP/poly.

Idea of the proof: weak regularity allows a decomposition result

Conclusion and future directions

■ Ongoing work: non-wellfounded approaches to FP/poly in the setting of linear logic.

- Future work: find proof-theoretic restrictions on nuB to characterise BPP (bounded-error probabilistic Dolvnomial time).

Conclusion and future directions

- Ongoing work: non-wellfounded approaches to FP/poly in the setting of linear logic.
- Future work: find proof-theoretic restrictions on nuB to characterise BPP (bounded-error probabilistic polynomial time).

Thank you!
 Questions?

Appendix
(4) Non-uniform complexity classes
(5) The non-wellfounded proof system nuB
(6) Proof-theoretic conditions defining nuB

Non-uniform complexity classes

- FP = class of functions computable in polynomial time on a Turing machine.
- FP/poly is an extension of FP that intuitively has access to a 'small' amount of advice, determined only by the length of the input.
- FP/poly = class of functions $f(\vec{x})$ for which there exists some strings $\alpha_{\vec{n}} \in\{0,1\}^{*}$ and a function $f^{\prime}(x, \vec{x}) \in \mathbf{F P}$ with:
- $\left|\alpha_{\vec{n}}\right|$ is polynomial in \vec{n}.
- $f(\vec{x})=f^{\prime}\left(\alpha_{|\vec{x}|}, \vec{x}\right)$.
- Note, in particular, that FP/poly admits undecidable problems. E.g. the function $f(x)=1$ just if $|x|$ is the code of a halting Turing machine (and 0 otherwise) is in FP/poly. Indeed, the point of the class FP/poly is to rather characterise a more non-uniform notion of computation.

■ Theorem: $f(\vec{x}) \in \mathbf{F P} /$ poly iff there are poly-size circuits computing $f(\vec{x})$.

- The class $\mathbf{F P}(\mathbb{R})$ consists of just the functions computable in polynomial time by a Turing machine with access to oracles from:

$$
\mathbb{R}:=\{f(x): \mathbb{N} \rightarrow\{0,1\}| | x|=|y| \Longrightarrow f(x)=f(y)\}
$$

- Note that the notation \mathbb{R} is suggestive here, since its elements are essentially maps from lengths/positions to Booleans, and so may be identified with Boolean streams.
- Theorem [Folklore]: $\mathbf{F P} /$ poly $=\mathbf{F P}(\mathbb{R})$.

44 Non-uniform complexity classes
(5) The non-wellfounded proof system nuB

Rules for the non-wellfounded proof system nuB

$$
\begin{aligned}
& \text { id } \overline{N \Rightarrow N} \quad \operatorname{cut}_{N} \frac{\Gamma \Rightarrow N \Gamma, N \Rightarrow B}{\Gamma \Rightarrow B} \quad \operatorname{cut}_{\square} \frac{\Gamma \Rightarrow \square \square N, \Gamma \Rightarrow B}{\Gamma \Rightarrow B} \\
& \mathrm{w}_{N} \frac{\Gamma \Rightarrow B}{\Gamma, N \Rightarrow B} \quad \mathrm{w}_{\square} \frac{\Gamma \Rightarrow B}{\square N, \Gamma \Rightarrow B} \quad \mathrm{e} \frac{\Gamma, A, B, \Gamma^{\prime} \Rightarrow C}{\Gamma, B, A, \Gamma^{\prime} \Rightarrow C} \quad \square_{l} \frac{\Gamma, N \Rightarrow A}{\square N, \Gamma \Rightarrow A} \quad \square_{r} \frac{\square \Gamma \Rightarrow N}{\square \Gamma \Rightarrow \square N}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{cond}_{N} \frac{\Gamma \Rightarrow N \quad\ulcorner, N \Rightarrow N \quad \Gamma, N \Rightarrow N}{\ulcorner, N \Rightarrow N} \\
& \underset{\operatorname{cond} \square}{\ulcorner\Rightarrow N \quad \square N, \Gamma \Rightarrow N \quad \square N, \Gamma \Rightarrow N} \\
& {\left.\operatorname{|cond}\right|_{N}}_{\Gamma \Rightarrow N \quad\ulcorner, N \Rightarrow N}^{\Gamma, N \Rightarrow N} \quad \mid \text { cond| }\left.\right|_{\square} \frac{\ulcorner\Rightarrow N \quad \square N, \Gamma \Rightarrow N}{\square N, \Gamma \Rightarrow N}
\end{aligned}
$$

Semantics of non-wellfounded proofs for nuB

$$
f_{\mathcal{D}}(;):=i
$$

$$
f_{\mathcal{D}}(; x):=s_{i} x
$$

$$
f_{\mathcal{D}}(\vec{x} ; \vec{y}):=f_{\mathcal{D}_{1}}\left(\vec{x} ; \vec{y}, f_{\mathcal{D}_{0}}(\vec{x} ; \vec{y})\right)
$$

$$
f_{\mathcal{D}}(\vec{x} ; \vec{y}):=f_{\mathcal{D}_{1}}\left(f_{\mathcal{D}_{0}}(\vec{x} ; \vec{y}), \vec{x} ; \vec{y}\right)
$$

$$
f_{\mathcal{D}}(0, \vec{x} ; \vec{y}) \quad:=\quad f_{\mathcal{D}_{0}}(\vec{x} ; \vec{y})
$$

$$
f_{\mathcal{D}}\left(s_{0} x, \vec{x} ; \vec{y}\right):=f_{\mathcal{D}_{1}}(x, \vec{x} ; \vec{y})
$$

$$
f_{\mathcal{D}}\left(\mathrm{s}_{1} x, \vec{x} ; \vec{y}\right):=f_{\mathcal{D}_{2}}(x, \vec{x} ; \vec{y})
$$

$$
f_{\mathcal{D}}(0, \vec{x} ; \vec{y}) \quad:=f_{\mathcal{D}_{0}}(\vec{x} ; \vec{y})
$$

$$
f_{\mathcal{D}}\left(\mathrm{s}_{i} x, \vec{x} ; \vec{y}\right) \quad:=\quad f_{\mathcal{D}_{2}}(x, \vec{x} ; \vec{y})
$$

4 Non-uniform complexity classes

(5) The non-wellfounded proof system nuB
(6) Proof-theoretic conditions defining nuB

Progressiveness

- Example. A cyclic proof \mathcal{D} representing a partial function:

- Progressive proof = every infinite branch contains a \square-thread with infinitely many principal formulas of the rule cond ${ }_{\square}$.
- Progressiveness ~ totality

Safety condition

- Example. Modalities are not enough to enforce stratification in our setting. E.g. cyclic progressing proof \mathcal{D} for primitive recursion (on notation):

$$
\begin{aligned}
f_{\mathcal{D}}(0, \vec{x} ;) & =f_{\mathcal{D}_{0}}(\vec{x} ;) \\
f_{\mathcal{D}}\left(s_{i} x, \vec{x} ;\right) & =f_{\mathcal{D}_{1}}(x, \vec{x}, f(x, \vec{x}) ;)
\end{aligned}
$$

- Safe proof $=$ any infinite branch crosses finitely many cut ${ }_{\square}$ rules.
- Safety condition rules out non-safe recursion schemes.

Safety condition induces a simpler \square-thread structure

Left-leaning condition

- Safety condition is not enough! We can express nested safe recursion.

■ Example. A cyclic progressing safe proof for the exponential function $\exp (x)(y)=2^{2^{|x|}} \cdot y:$

- Left-leaning proof $=$ any branch goes right at a cut_{N} rule only finitely often.

Hofmann's type system SLR [Hofmann 97]

- Two function spaces: $\square A \rightarrow B$ (modal) and $A \multimap B$ (linear).
- Safe linear recursion operator (with $A \square$-free):

$$
\operatorname{rec}_{A}: \square N \rightarrow \underbrace{(\square N \rightarrow A \multimap A)}_{h} \rightarrow A \rightarrow A
$$

where $f(x)=\operatorname{rec}_{A}(x, h, g)$ means:

$$
\begin{aligned}
f(0) & =g \\
f\left(\mathrm{~s}_{0} x\right) & =h(x, f(x)) \\
f\left(\mathrm{~s}_{1} x\right) & =h(x, f(x))
\end{aligned}
$$

- terms $t:(\square N)^{n} \rightarrow N^{m} \multimap N$ represent exactly the functions in FP.

Nesting and higher-order recursion

- Nested recursion in SLR if higher-order types are not handled linearly:

$$
\begin{aligned}
& \begin{array}{ll}
A=N \rightarrow N \\
g=s_{0} & : A \\
h=\lambda x: \square N \cdot \lambda u: N \rightarrow N \cdot \lambda y: N . u(u y) & : \square N \rightarrow A \rightarrow A \rightarrow A \\
& \\
& \exp (x ; y)=\operatorname{rec}_{A}(x, h, g)(y)
\end{array}
\end{aligned}
$$

- Takeaway. Type n cyclic proofs can represent type $\mathrm{n}+1$ recursion [Das 21].
- Left-leaning is a linearity condition: it prevents duplication of recursive calls, and hence their nesting.

