Implicit Computational Complexity

Guest Lecture for the course Algorithms and Complexity

Gianluca Curzi

School of Computer Science

University of Birmingham

01,/04/2022

0 Preliminaries

Warm up

» Question: What is computational complexity?

1/16

Implicit Computational Complexity

> Answer to previous question: computational complexity studies complexity
classes, i.e. classes of languages (resp. functions) that can be accepted

(resp. computed) by a machine (e.g. Turing machine) in a certain resource
bound (e.g. time and space)

2/16

Implicit Computational Complexity

> Answer to previous question: computational complexity studies complexity
classes, i.e. classes of languages (resp. functions) that can be accepted
(resp. computed) by a machine (e.g. Turing machine) in a certain resource
bound (e.g. time and space)

» Implicit computational complexity (ICC): branch of computational complexity
describing complexity classes without explicit reference to machine models or
cost bounds.

» |CC originates in the 90's with seminal paper on safe recursion [Bellantoni and
Cook 92].

2/16

A closer look at ICC

» Borrows techniques and results from Mathematical Logic:

o Recursion Theory (Restriction of primitive recursion schema);
e Proof Theory (Curry-Howard correspondence);
e Model Theory (Finite model theory).

3/16

A closer look at ICC

» Borrows techniques and results from Mathematical Logic:
o Recursion Theory (Restriction of primitive recursion schema);
e Proof Theory (Curry-Howard correspondence);
e Model Theory (Finite model theory).

» One of the goals: It aims to define programming language tools (e.g.,
type-systems) where runtime of programs can be statically certified.

/16

A closer look at ICC

» Borrows techniques and results from Mathematical Logic:

o Recursion Theory (Restriction of primitive recursion schema);
e Proof Theory (Curry-Howard correspondence);
e Model Theory (Finite model theory).

» One of the goals: It aims to define programming language tools (e.g.,
type-systems) where runtime of programs can be statically certified.

> Pervasive notion of stratification: data are organized into strata (Bellantoni's
safe recursion [Bellantoni and Cook 92], Leivant's predicative/ramified/tiered
recursion [Leivant 95]).

/16

Some caveats. . .

» This lecture is about FPTIME (= functions computed in polynomial time).

o languages accepted vs functions computed
e time complexity vs space complexity

e linear, polynomial, exponential, ...

4/16

Some caveats. . .

» This lecture is about FPTIME (= functions computed in polynomial time).

o languages accepted vs functions computed
e time complexity vs space complexity

e linear, polynomial, exponential, ...

» Recursion-theoretic approach to characterise FPTIME in the style of ICC:

o Algebra of primitive recursive functions PR
o Problem: find weaker algebra of functions X C PR such that X = FPTIME

o ldea: restrict primitive recursion scheme

/16

Some caveats. . .

» This lecture is about FPTIME (= functions computed in polynomial time).

o languages accepted vs functions computed
e time complexity vs space complexity

e linear, polynomial, exponential, ...

» Recursion-theoretic approach to characterise FPTIME in the style of ICC:

o Algebra of primitive recursive functions PR
o Problem: find weaker algebra of functions X C PR such that X = FPTIME

o ldea: restrict primitive recursion scheme

> Stepwise approach:

o From primitive recursion to bounded recursion (on notation) — machine-free

o Safe recursion on notation — machine-free + bound-free = ICC

4/16

© Primitive recursive functions

A recap of primitive recursive functions

PR is the smallest class of number-theoretic functions such that:
» |t contains the basic functions

o Constant zero: 0 € N
e Successor: S:N—= N, S(x) =x+1
o Projections: for any k € N and i < k, 7f : N¥ - N, w,-k(xl,..‘,xk) =X

5/16

A recap of primitive recursive functions

PR is the smallest class of number-theoretic functions such that:
» |t contains the basic functions

o Constant zero: 0 € N
e Successor: S:N—= N, S(x) =x+1
o Projections: for any k € N and i < k, 7f : N¥ - N, w,-k(xl,..‘,xk) =X

» It is closed under the composition scheme:
o from h: N""! — N and g : N" — N define f : N — N such that:

f(X) = h(X, &(X))

5/16

A recap of primitive recursive functions

PR is the smallest class of number-theoretic functions such that:
» |t contains the basic functions

o Constant zero: 0 € N
e Successor: S:N—= N, S(x) =x+1
o Projections: for any k € N and i < k, 7f : N¥ - N, w,-k(xl,..‘,xk) =X

» It is closed under the composition scheme:
o from h: N""! — N and g : N" — N define f : N — N such that:
f(X) = h(x, g(X))

» It is closed under the primitive recursion scheme:
e from g:N" — N to h: N — N define f : N""! — N such that:

f(0.y) = &)
F(5(x),¥) h(x,y,f(x,¥))

5/16

Recursive functions as a machine model

> Original goal: extensional definition as a class of functions

» Natural operational interpretation as rewriting

6/16

Recursive functions as a machine model

> Original goal: extensional definition as a class of functions

» Natural operational interpretation as rewriting

» However: no notion of constant time elementary step.

» Rewriting involves duplication of data of arbitrary size and of computations of
arbitrary length.

> Need of non trivial data structures (stack) to (naively) implement primitive
recursion.

© Bounded recursion on notation

A notational problem

> Complexity classes defined for binary strings (e.g. 1001)

» Binary representation of natural numbers:

n — |n|

9=l — 1001
where |n| = log n
» Usual recursion is on unary notation:
linear in n = exponential in |n]|

indeed n = 28" ~ 2l

7/16

A notational problem

> Complexity classes defined for binary strings (e.g. 1001)

» Binary representation of natural numbers:

n — |n|
9=/l = 1001
where |n| = log n
» Usual recursion is on unary notation:
linear in n = exponential in |n]|
indeed n = 2'%8" = 2l

> Solution: recursion on (binary) notation.

Recursion on notation

» Data: natural numbers
» Two “successors’:
e so(n) = 2n (i.e. adding 0 at the least significant position)
e s1(n) =2n+1 (i.e. adding 1 at the least significant position)

8/16

Recursion on notation

» Data: natural numbers
» Two “successors’:

e so(n) = 2n (i.e. adding 0 at the least significant position)
e s1(n) =2n+1 (i.e. adding 1 at the least significant position)

» Recursion on notation:

o from g : N" — N and ho, h1 : N™*2 5 N define f : N” — N such that:

£0.y) = &(¥)
f(0(x),¥) = h(x7 f(x,¥) x#0
f(Sl(X),y) = hl(vavf(X7}7))

> Now recursion converges quickly to a base case: f(n) involves at most
log n & |n| recursive calls.

8/16

Recursion on notation is too generous

» Function double(x) such that |double(x)| =2 - |x|:

double(0) = 1
double(so(x)) = so(so(double(x))) x#0
double(si1(x)) = sp(so(double(x)))

9/16

Recursion on notation is too generous

» Function double(x) such that |double(x)| =2 - |x|:

double(0) = 1
double(so(x)) = so(so(double(x))) x#0
double(si1(x)) = sp(so(double(x)))
> Function exp(x):
exp(0) = 1
exp(so(x)) = double(exp(x)) x#0
exp(s1(x)) = double(exp(x))

> exp(x) has exponential length in |x|, i.e. |exp(x)| = 2.

9/16

Bounded recursion on notation (Cobham 1965)

» Bounded recursion on notation:
o from g :N" — N and ho, b1 : N™"2 - N and k: N""! 5 N

f0,y) = &%)
f(so(x),¥) = ho(x, ¥, f(x,¥)) x#0
f(si(x),¥) = h(x, ¥, f(x,5))

provided f(x,¥) < k(x,¥).
» We need an extra basic function to achieve the desired growth rate:

sty = 2Wxly]

10/16

Bounded recursion on notation (Cobham 1965)

» Bounded recursion on notation:

o from g :N" — N and ho, b1 : N™"2 - N and k: N""! 5 N

£(0,¥)
f(s0(x),¥)
f(s1(x),)

provided f(x,y) < k(x,¥).

g(¥)
ho(x,y,f(x,¥)) x#0
hi(x,y,f(x,¥))

» We need an extra basic function to achieve the desired growth rate:

sty = 2Wxly]

BRN is the smallest class of number-theoretic functions such that:

> |t contains the basic functions (zero, successor, projections) and smash

function.

» |t is closed under the composition scheme.

» |t is closed under the bounded recursion on notation scheme.

10/16

BRN is an algebra of polytime computable functions

Theorem (Cobham, 65)
BRN = FPTIME.

11/16

BRN is an algebra of polytime computable functions

Theorem (Cobham, 65)
BRN = FPTIME.

» FPTIME C BRN: Code TMs as functions of the algebra. The iteration of the
transition function is representable because a priori polynomially bounded.

11/16

BRN is an algebra of polytime computable functions

Theorem (Cobham, 65)
BRN = FPTIME.

» FPTIME C BRN: Code TMs as functions of the algebra. The iteration of the
transition function is representable because a priori polynomially bounded.

> BRN C FPTIME: By induction on the length of the definition, show that any
function is computable by a polynomially bounded TM, exploiting the bound
on the recursive definition.

11/16

A critique to Cobham characterization

» Cobham's paper is the birth of computational complexity as a respected theory,
as it characterized FPTIME as a mathematically meaningful class.

» However: from the implicit computational complexity perspective, it is not as
implicit as it seems:
o It uses an explicit a priori bound on the construction

o It “throws in” the polynomials (i.e., the # function) in the recipe, in order to
make it work.

» We had to wait until the '90s to get a more “implicit” characterization of
FPTIME. ..

12/16

@ Safe recursion on notation

Safe recursion: idea

> Analysis of the exponential function exp(x): recursive call of exp is in turn
recursive parameter of double(x).

» Different strategy to control the growth of function:

bounded recursion ~» unbounded recursion + stratification (safe/normal)

13/16

Safe recursion: idea

> Analysis of the exponential function exp(x): recursive call of exp is in turn
recursive parameter of double(x).

» Different strategy to control the growth of function:

bounded recursion ~» unbounded recursion + stratification (safe/normal)

» Function arguments are partitioned into normal and safe:
f(Xl',' <5 Xng Y1y .- '7ym)

» Safe recursion on notation:

f0.5.7) = &(x%y)
(SOX,)_(‘,_)_/‘) = hO(X X .y? f(X*;vy))
flsix,%:y) = h(x, Xy f(x, X))

—

> Idea: recursive call f(x,X;) is never the recursive parameter of h;.

13/16

Safe composition

» Composition is constrained to respect this partition.

» Safe composition:

) = h(xg(xy)

y
f(x;y) = h(g(x;):y) no safe parameters in g!

» Idea: We can move a normal argument in safe position but not vice versa:

h(x;y) — f(x;x) : fx;x) = h(x;ai(x;)) = h(x;x)
h(x;y) v Fyiy) - flyiy) # h(riGy)iy) = h(yiy)

14 /16

The algebra of function BC

BC is the smallest class of number-theoretic functions such that:

> |t contains the following basic functions:

» It is closed under safe recursion on notation and safe composition.

Constant zero: 0

Successors: so(;x) =2-x and si(;x) =2-x+1
Projections: 7r,f;""(x1, ey Xny Y1y -, Ym) = X; and
T (Xt Xni Y1, s Ym) = Y

Predecessor: P(;0) =0 and P(; si(x)) = x

Conditional:
iy — ,
C(;X,y,z)—{y = %(x)

x
z ifx=s(x)

15/16

BC is an algebra of polytime computable functions

Theorem (Bellantoni and Cook, 92)
f(%:) € BC iff f(X) € BRN.

16 /16

BC is an algebra of polytime computable functions

Theorem (Bellantoni and Cook, 92)

f(%:) € BC iff (%) € BRN.

> if f(X;) € BC then f(X) € BRN:
e For any f(X;) € BC there is a polynomial gr such that
[f(X: 7)< ar(IX]) + max(|¥]) gr polynomial

o Observe that such gr are definable in BRN

o Thus, safe recursion on notation instance of bounded recursion on notation.

16 /16

BC is an algebra of polytime computable functions

Theorem (Bellantoni and Cook, 92)
f(%:) € BC iff f(X) € BRN.

> if f(X;) € BC then f(X) € BRN:
e For any f(X;) € BC there is a polynomial gr such that

IF(X:¥) < qr(IX]) + max(|y¥]) gr polynomial

o Observe that such gr are definable in BRN
o Thus, safe recursion on notation instance of bounded recursion on notation.

> If £(X) € BRN then f(X;) € BC.

e By induction on derivation on Cobham'’s system, show that for any f(X) € BRN
there is a function h(w; X) € BC and a polynomial pr such that h(w; X) = f(X)
for all X and for any w > pr(|X|)

o Now construct a function b(X) € BC such that b(X;) > pr(|X])

e Set f(X;) = h(b(X;);X) € BC.

16 /16

Thank you!
Questions?

	Preliminaries
	Primitive recursive functions
	Bounded recursion on notation
	Safe recursion on notation

