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Warm up

▶ Question: What is computational complexity?
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Implicit Computational Complexity

▶ Answer to previous question: computational complexity studies complexity
classes, i.e. classes of languages (resp. functions) that can be accepted
(resp. computed) by a machine (e.g. Turing machine) in a certain resource
bound (e.g. time and space)

▶ Implicit computational complexity (ICC): branch of computational complexity
describing complexity classes without explicit reference to machine models or
cost bounds.

▶ ICC originates in the 90’s with seminal paper on safe recursion [Bellantoni and
Cook 92].
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A closer look at ICC

▶ Borrows techniques and results from Mathematical Logic:
Recursion Theory (Restriction of primitive recursion schema);
Proof Theory (Curry-Howard correspondence);
Model Theory (Finite model theory).

▶ One of the goals: It aims to define programming language tools (e.g.,
type-systems) where runtime of programs can be statically certified.

▶ Pervasive notion of stratification: data are organized into strata (Bellantoni’s
safe recursion [Bellantoni and Cook 92], Leivant’s predicative/ramified/tiered
recursion [Leivant 95]).
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Some caveats. . .

▶ This lecture is about FPTIME (= functions computed in polynomial time).
languages accepted vs functions computed
time complexity vs space complexity
linear, polynomial, exponential, . . .

▶ Recursion-theoretic approach to characterise FPTIME in the style of ICC:
Algebra of primitive recursive functions PR
Problem: find weaker algebra of functions X ⊊ PR such that X = FPTIME
Idea: restrict primitive recursion scheme

▶ Stepwise approach:
From primitive recursion to bounded recursion (on notation) → machine-free
Safe recursion on notation → machine-free + bound-free = ICC
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A recap of primitive recursive functions

PR is the smallest class of number-theoretic functions such that:
▶ It contains the basic functions

Constant zero: 0 ∈ N
Successor: S : N → N, S(x) = x + 1
Projections: for any k ∈ N and i ≤ k, πk

i : Nk → N, πk
i (x1, . . . , xk) = xi

▶ It is closed under the composition scheme:
from h : Nn+1 → N and g : Nn → N define f : Nn → N such that:

f (x⃗) = h(x⃗ , g(x⃗))

▶ It is closed under the primitive recursion scheme:
from g : Nn → N to h : Nn+2 → N define f : Nn+1 → N such that:

f (0, y⃗) = g(y⃗)

f (S(x), y⃗) = h(x , y⃗ , f (x , y⃗))
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Recursive functions as a machine model

▶ Original goal: extensional definition as a class of functions

▶ Natural operational interpretation as rewriting

▶ However: no notion of constant time elementary step.

▶ Rewriting involves duplication of data of arbitrary size and of computations of
arbitrary length.

▶ Need of non trivial data structures (stack) to (näıvely) implement primitive
recursion.
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A notational problem

▶ Complexity classes defined for binary strings (e.g. 1001)

▶ Binary representation of natural numbers:

n 7→ |n|

9 = ||||||||| 7→ 1001

where |n| ≈ log n

▶ Usual recursion is on unary notation:

linear in n = exponential in |n|

indeed n = 2log n ≈ 2|n|

▶ Solution: recursion on (binary) notation.
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Recursion on notation

▶ Data: natural numbers
▶ Two “successors”:

s0(n) = 2n (i.e. adding 0 at the least significant position)
s1(n) = 2n + 1 (i.e. adding 1 at the least significant position)

▶ Recursion on notation:
from g : Nn → N and h0, h1 : Nn+2 → N define f : Nn → N such that:

f (0, y⃗) = g(y⃗)

f (s0(x), y⃗) = h0(x , y⃗ , f (x , y⃗)) x ̸= 0

f (s1(x), y⃗) = h1(x , y⃗ , f (x , y⃗))

▶ Now recursion converges quickly to a base case: f (n) involves at most
log n ≈ |n| recursive calls.
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Recursion on notation is too generous

▶ Function double(x) such that |double(x)| = 2 · |x |:

double(0) = 1

double(s0(x)) = s0(s0(double(x))) x ̸= 0

double(s1(x)) = s0(s0(double(x)))

▶ Function exp(x):

exp(0) = 1

exp(s0(x)) = double(exp(x)) x ̸= 0

exp(s1(x)) = double(exp(x))

▶ exp(x) has exponential length in |x |, i.e. |exp(x)| = 2|x |.
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Bounded recursion on notation (Cobham 1965)
▶ Bounded recursion on notation:

from g : Nn → N and h0, h1 : Nn+2 → N and k : Nn+1 → N

f (0, y⃗) = g(y⃗)

f (s0(x), y⃗) = h0(x , y⃗ , f (x , y⃗)) x ̸= 0

f (s1(x), y⃗) = h1(x , y⃗ , f (x , y⃗))

provided f (x , y⃗) ≤ k(x , y⃗).

▶ We need an extra basic function to achieve the desired growth rate:

x♯y = 2|x |·|y |

BRN is the smallest class of number-theoretic functions such that:
▶ It contains the basic functions (zero, successor, projections) and smash

function.
▶ It is closed under the composition scheme.
▶ It is closed under the bounded recursion on notation scheme.
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BRN is an algebra of polytime computable functions

Theorem (Cobham, 65)
BRN = FPTIME.

▶ FPTIME ⊆ BRN: Code TMs as functions of the algebra. The iteration of the
transition function is representable because a priori polynomially bounded.

▶ BRN ⊆ FPTIME: By induction on the length of the definition, show that any
function is computable by a polynomially bounded TM, exploiting the bound
on the recursive definition.
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A critique to Cobham characterization

▶ Cobham’s paper is the birth of computational complexity as a respected theory,
as it characterized FPTIME as a mathematically meaningful class.

▶ However: from the implicit computational complexity perspective, it is not as
implicit as it seems:

It uses an explicit a priori bound on the construction
It “throws in” the polynomials (i.e., the ♯ function) in the recipe, in order to
make it work.

▶ We had to wait until the ’90s to get a more “implicit” characterization of
FPTIME. . .
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Safe recursion: idea
▶ Analysis of the exponential function exp(x): recursive call of exp is in turn

recursive parameter of double(x).

▶ Different strategy to control the growth of function:

bounded recursion ⇝ unbounded recursion + stratification (safe/normal)

▶ Function arguments are partitioned into normal and safe:

f (x1, . . . , xn ; y1, . . . , ym)

▶ Safe recursion on notation:

f (0, x⃗ ; y⃗) = g(x⃗ ; y⃗)
f (s0x , x⃗ ; y⃗) = h0(x , x⃗ ; y⃗ , f (x , x⃗ ; y⃗))
f (s1x , x⃗ ; y⃗) = h1(x , x⃗ ; y⃗ , f (x , x⃗ ; y⃗))

▶ Idea: recursive call f (x , x⃗ ; y⃗) is never the recursive parameter of hi .
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Safe composition

▶ Composition is constrained to respect this partition.

▶ Safe composition:

f (x⃗ ; y⃗) = h(x⃗ ; g(x⃗ ; y⃗))

f (x⃗ ; y⃗) = h(g(x⃗ ; ); y⃗) no safe parameters in g!

▶ Idea: We can move a normal argument in safe position but not vice versa:

h(x ; y) 7→ f (x ; x) : f (x ; x) = h(x ; π1
1(x ; )) = h(x ; x)

h(x ; y) ̸7→ f (y ; y) : f (y ; y) ̸= h(π1
1(; y); y) = h(y ; y)
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The algebra of function BC

BC is the smallest class of number-theoretic functions such that:
▶ It contains the following basic functions:

Constant zero: 0
Successors: s0(; x) = 2 · x and s1(; x) = 2 · x + 1
Projections: πn,m

i ; (x1, . . . , xn; y1, . . . , ym) = xi and
πn,m

;j (x1, . . . , xn; y1, . . . , ym) = yj

Predecessor: P(; 0) = 0 and P(; si(x)) = x
Conditional:

C(; x , y , z) =
{

y if x = s0(x ′)
z if x = s1(x ′)

▶ It is closed under safe recursion on notation and safe composition.
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BC is an algebra of polytime computable functions

Theorem (Bellantoni and Cook, 92)
f (x⃗ ; ) ∈ BC iff f (x⃗) ∈ BRN.

▶ if f (x⃗ ; ) ∈ BC then f (x⃗) ∈ BRN:
For any f (x⃗ ; ) ∈ BC there is a polynomial qf such that

|f (x⃗ ; y⃗)| ≤ qf (|⃗x |) + max (|⃗y |) qf polynomial

Observe that such qf are definable in BRN
Thus, safe recursion on notation instance of bounded recursion on notation.

▶ If f (x⃗) ∈ BRN then f (x⃗ ; ) ∈ BC.

By induction on derivation on Cobham’s system, show that for any f (x⃗) ∈ BRN
there is a function h(w ; x⃗) ∈ BC and a polynomial pf such that h(w ; x⃗) = f (x⃗)
for all x⃗ and for any w ≥ pf (|⃗x |)
Now construct a function b(x⃗) ∈ BC such that b(x⃗ ; ) ≥ pf (|⃗x |)
Set f (x⃗ ; ) = h(b(x⃗ ; ); x⃗) ∈ BC.
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Thank you!
Questions?
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