## Linear Additives

# Gianluca Curzi (Università di Torino) 

TLLA 2020
Paris, Aubervilliers

## Introduction

- Additive rules of LL as type assignment rules:

$$
\langle M, N\rangle: A \& B \quad \pi_{1}: A \& B \multimap A \quad \pi_{2}: A \& B \multimap B
$$

- Variants of \& to capture NP [Maurel 03, Matsuoka 04, Gaboardi et al. 08].
- Lazy reduction to "freeze" evaluation [Girard 96].

This talk: new system LAM with linear additive rules, which allow strong
linear normalization.

## Introduction

- Additive rules of LL as type assignment rules:

$$
\langle M, N\rangle: A \& B \quad \pi_{1}: A \& B \multimap A \quad \pi_{2}: A \& B \multimap B
$$

- Variants of \& to capture NP [Maurel 03, Matsuoka 04, Gaboardi et al. 08].
- Drawback: exponential blow up

$$
\text { e.g. } \quad(\lambda x .\langle x, x\rangle) M \rightsquigarrow\langle M, M\rangle
$$

- Lazy reduction to "freeze" evaluation [Girard 96].


## Introduction

- Additive rules of LL as type assignment rules:

$$
\langle M, N\rangle: A \& B \quad \pi_{1}: A \& B \multimap A \quad \pi_{2}: A \& B \multimap B
$$

- Variants of \& to capture NP [Maurel 03, Matsuoka 04, Gaboardi et al. 08].
- Drawback: exponential blow up

$$
\text { e.g. } \quad(\lambda x .\langle x, x\rangle) M \rightsquigarrow\langle M, M\rangle
$$

- Lazy reduction to "freeze" evaluation [Girard 96].
- This talk: new system LAM with linear additive rules, which allow strong linear normalization.
(1) The system LAM and basic properties
(2) A translation of LAM into $\mathrm{IMLL}_{2}$
(3) Perspectives

4) Appendix

## Linear additives in a nutshell

- How to get rid of the exponential blow up?

Avoid the increase of redexes $\rightsquigarrow$ linear time normalization. - Avoid the increase of size $\rightsquigarrow$ linear space normalization.

$$
\frac{x: A \vdash M_{1}: B_{1} \quad x: A \vdash M_{2}: B_{2}}{x: A \vdash\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \& \mathrm{R}
$$

$\left(\lambda x .\left\langle M_{1}, M_{2}\right\rangle\right) N \rightarrow\left\langle M_{1}, M_{2}\right\rangle[N / x]=\left\langle M_{1}[N / x], M_{2}[N / x]\right\rangle$

## Linear additives in a nutshell

- How to get rid of the exponential blow up?
- Avoid the increase of redexes $\rightsquigarrow$ linear time normalization.
- Avoid the increase of size $\rightsquigarrow$ linear space normalization.
but preserving Subject reduction.

$$
\begin{aligned}
& \frac{x_{1}: A \vdash M_{1}: B_{1} \quad x_{2}: A \vdash M_{2}: B_{2}}{x: A \vdash \operatorname{copy} x \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \& \mathrm{R} \\
& \operatorname{copy} V \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle \rightarrow\left\langle M_{1}\left[V / x_{1}\right], M_{2}\left[V / x_{2}\right]\right\rangle
\end{aligned}
$$

$V$ is a value (closed normal form).

## Linear additives in a nutshell

- How to get rid of the exponential blow up?
- Avoid the increase of redexes $\rightsquigarrow$ linear time normalization.
- Avoid the increase of size $\rightsquigarrow$ linear space normalization.

$$
\begin{aligned}
& \frac{x_{1}: A \vdash M_{1}: B_{1} \quad x_{2}: A \vdash M_{2}: B_{2} \quad \vdash U: A}{x: A \vdash \operatorname{copy}^{U} x \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \& \mathrm{R} \\
& \operatorname{copy}^{U} V \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle \rightarrow\left\langle M_{1}\left[V / x_{1}\right], M_{2}\left[V / x_{2}\right]\right\rangle
\end{aligned}
$$

$U, V$ are values (closed normal forms).
$A, B_{1}, B_{2}$ are closed and $\forall$-lazy types (free from negative $\forall$ ).

## Linear additives in a nutshell

- How to get rid of the exponential blow up?
- Avoid the increase of redexes $\rightsquigarrow$ linear time normalization.
- Avoid the increase of size $\rightsquigarrow$ linear space normalization.
- ... but preserving Subject reduction.

$$
\begin{gathered}
\frac{\vdash V: A}{} \frac{x_{1}: A \vdash N_{1}: B_{1} \quad x_{2}: A \vdash N_{2}: B_{2} \quad \vdash U: A}{x: A \vdash \operatorname{copy}^{U} x \text { as } x_{1}, x_{2} \text { in }\left\langle N_{1}, N_{2}\right\rangle: B_{1} \& B_{2}} \text { \& } \& \mathrm{R} \\
\qquad \operatorname{copy}^{U} V \text { as } x_{1}, x_{2} \text { in }\left\langle N_{1}, N_{2}\right\rangle: B_{1} \& B_{2} \\
\downarrow \\
\\
\frac{\vdash N_{1}\left[V / x_{1}\right]: B_{1} \quad \vdash N_{2}\left[V / x_{2}\right]: B_{2}}{\vdash\left\langle N_{1}\left[V / x_{1}\right], N_{2}\left[V / x_{2}\right]\right\rangle: B_{1} \& B_{2}} \& R \emptyset
\end{gathered}
$$

## Linearly Additive Multiplicative Type Assignment (LAM)

- System LAM $=\mathrm{IMLL}_{2}+$ linear additive rules ("weaker" additives):

$$
\begin{gathered}
\frac{\Gamma, x_{i}: A_{i} \vdash M: C \quad i \in\{1,2\}}{\Gamma, y: A_{1} \& A_{2} \vdash M\left[\pi_{i}(y) / x_{i}\right]: C} \& L i \quad \frac{\vdash M_{1}: B_{1} \vdash M_{2}: B_{2}}{\vdash\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \& \mathrm{R} \emptyset \\
\frac{x_{1}: A \vdash M_{1}: B_{1} \quad x_{2}: A \vdash M_{2}: B_{2} \quad \vdash V: A}{x: A \vdash \operatorname{copy}^{V} x \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \& \mathrm{R}
\end{gathered}
$$

- Conditions
- $V$ is a value.
- $A, A_{1}, A_{2}, B_{1}, B_{2}$ are closed and $\forall$-lazy.
- Closure: if $\Gamma \vdash M$ : $A$ and $F V(A)=\emptyset$ then $F V(\Gamma)=\emptyset$.
- Reduction rules:

$$
\begin{aligned}
(\lambda x . M) N & \rightarrow M[N / x] & & \\
\pi_{i}\left\langle M_{1}, M_{2}\right\rangle & \rightarrow M_{i} & & i \in\{1,2\} \\
\text { copy }^{U} V \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle & \rightarrow\left\langle M_{1}\left[V / x_{1}\right], M_{2}\left[V / x_{2}\right]\right\rangle & & U, V \text { values }
\end{aligned}
$$

- Reduction rules:

$$
\begin{aligned}
(\lambda x . M) N & \rightarrow M[N / x] & & \\
\pi_{i}\left\langle M_{1}, M_{2}\right\rangle & \rightarrow M_{i} & & i \in\{1,2\} \\
\text { copy }^{U} V \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle & \rightarrow\left\langle M_{1}\left[V / x_{1}\right], M_{2}\left[V / x_{2}\right]\right\rangle & & U, V \text { values }
\end{aligned}
$$

- Restricted cut-elimination rules:

$$
\frac{\frac{\mathcal{D}}{\vdash N: A} \times \quad \frac{x_{1}: A \vdash M_{1}: B_{1} \quad x_{2}: A \vdash M_{2}: B_{2} \quad \vdash U: A}{x: A \vdash \operatorname{copy}^{U} \times \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \text { cut }}{\vdash \operatorname{copy}^{U} N \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}}
$$

- Reduction rules:

$$
\begin{aligned}
(\lambda x . M) N & \rightarrow M[N / x] & & \\
\pi_{i}\left\langle M_{1}, M_{2}\right\rangle & \rightarrow M_{i} & & i \in\{1,2\} \\
\text { copy }^{U} V \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle & \rightarrow\left\langle M_{1}\left[V / x_{1}\right], M_{2}\left[V / x_{2}\right]\right\rangle & & U, V \text { values }
\end{aligned}
$$

- Restricted cut-elimination rules:

$$
\begin{aligned}
& \frac{\frac{\mathcal{D}}{\vdash N: A} \times \quad \frac{x_{1}: A \vdash M_{1}: B_{1} \quad x_{2}: A \vdash M_{2}: B_{2} \quad \vdash U: A}{x: A \vdash \operatorname{copy}^{U} \times \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \text { \& }}{\qquad \text { R }} \\
& \rightsquigarrow \text { cut } \\
& \frac{\frac{\mathcal{D}}{\vdash N: A} X \quad x_{1}: A \vdash M_{1}: B_{1}}{\vdash M_{1}\left[N / x_{1}\right]: B_{1}} \text { cut } \frac{\frac{\mathcal{D}}{\vdash N: A} X \quad x_{2}: A \vdash M_{2}: B_{1}}{\left.\left.\vdash N / x_{1}\right], M_{2}\left[N / x_{2}\right]\right\rangle: B_{1} \& B_{2}} \text { cut }
\end{aligned}
$$

- Reduction rules:

$$
\begin{aligned}
(\lambda x . M) N & \rightarrow M[N / x] & & \\
\pi_{i}\left\langle M_{1}, M_{2}\right\rangle & \rightarrow M_{i} & & i \in\{1,2\} \\
\text { copy }^{U} V \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle & \rightarrow\left\langle M_{1}\left[V / x_{1}\right], M_{2}\left[V / x_{2}\right]\right\rangle & & U, V \text { values }
\end{aligned}
$$

- Restricted cut-elimination rules:

$$
\begin{aligned}
& \frac{\frac{\mathcal{D}^{\text {cf }}}{\vdash V: A} \times \quad \frac{x_{1}: A \vdash M_{1}: B_{1} \quad x_{2}: A \vdash M_{2}: B_{2} \quad \vdash U: A}{x: A \vdash \operatorname{copy}^{U} x \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \text { cut }}{\vdash \operatorname{copy}^{U} V \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \\
& \rightsquigarrow \text { cut } \\
& \frac{\frac{\mathcal{D}^{\mathrm{cf}}}{\vdash V: A} X \quad x_{1}: A \vdash M_{1}: B_{1}}{\vdash M_{1}\left[V / x_{1}\right]: B_{1}} \operatorname{\vdash \langle M_{1}[V/x_{1}],M_{2}[V/x_{2}]\rangle :B_{1}\& B_{2}} \frac{\frac{\mathcal{D}^{\mathrm{cf}}}{\vdash V: A} X \quad x_{2}: A \vdash M_{2}: B_{1}}{\vdash M_{2}\left[V / x_{2}\right]: B_{2}} \text { \&R } c u t
\end{aligned}
$$

## Basic properties of LAM

- Theorem ( $\forall$-lazy cut-elimination): Let $\mathcal{D}$ be a derivation of a $\forall$-lazy type (no negative $\forall$ ). Then, $\mathcal{D}$ can be rewritten by the restricted cut-elimination rules to a cut-free derivation $\mathcal{D}^{*}$ in a cubic number of steps.
- Theorem (Subject reduction): If $\Gamma \vdash_{\text {Lam }} M: A$ and $M \rightarrow N$, then:
(i) $\operatorname{size}(N)<\operatorname{size}(M)$,
(ii) $\Gamma \vdash_{\text {LAM }} N: A$.
- Corollary (Strong linear normalization): If $\Gamma \vdash_{\text {LAM }} M: A$ then $M$ reduces to a normal form in at most size $(M)$ steps.


## (1) The system LAM and basic properties

(2) A translation of LAM into $\mathrm{IMLL}_{2}$

## On the expressiveness of $\mathrm{IMLL}_{2}$

- $\mathrm{IMLL}_{2}$ as type assignment for the linear $\lambda$-calculus:

$$
\begin{array}{ll}
\text { I: } \mathbf{1} & \lambda x . \text { let } x \text { be } \mathbf{I} \text { in } M: \mathbf{1} \multimap C \\
M \otimes N: A \otimes B & \lambda x . \text { let } x \text { be } x_{1} \otimes x_{2} \text { in } M: A \otimes B \multimap C
\end{array}
$$

- Encoding boolean circuits in $\mathrm{IMLL}_{2}$ [Mairson 03, Mairson\&Terui 03].

$$
\mathbf{B} \triangleq \forall \alpha . \alpha \multimap \alpha \multimap \alpha \otimes \alpha \quad \underline{0} \triangleq \lambda x \cdot \lambda y \cdot x \otimes y \quad \underline{1} \triangleq \lambda x . \lambda y \cdot y \otimes x
$$

## On the expressiveness of $\mathrm{IMLL}_{2}$

- $\mathrm{IMLL}_{2}$ as type assignment for the linear $\lambda$-calculus:
I: 1
$\lambda x$.let $x$ be $\mathbf{I}$ in $M: \mathbf{1} \multimap C$
$M \otimes N: A \otimes B \quad \lambda x$.let $x$ be $x_{1} \otimes x_{2}$ in $M: A \otimes B \multimap C$
- Encoding boolean circuits in $\mathrm{IMLL}_{2}$ [Mairson 03, Mairson\&Terui 03].

$$
\mathbf{B} \triangleq \forall \alpha \cdot \alpha \multimap \alpha \multimap \alpha \otimes \alpha \quad \underline{0} \triangleq \lambda x \cdot \lambda y \cdot x \otimes y \quad \underline{1} \triangleq \lambda x \cdot \lambda y \cdot y \otimes x
$$

- How to "linearly" express fan-out?



## Linear erasure and duplication in $\mathrm{IMLL}_{2}$

- Linear erasure by consumption of data:

$$
\mathrm{E}_{\mathbf{B}} \triangleq \lambda z . \text { let } z \mathbf{I} \text { be } x, y \text { in }(\text { let } y \text { be } \mathbf{I} \text { in } x)
$$

- Example:

$$
\begin{aligned}
\mathrm{E}_{\mathbf{B}} \underline{0} & \rightarrow \text { let }(\lambda x \cdot \lambda y \cdot x \otimes y) \| \text { be } x, y \text { in }(\text { let } y \text { be } \mathbf{I} \text { in } x) \\
& \rightarrow \text { let } \mathbf{I} \otimes \mathbf{I} \text { be } x, y \text { in }(\text { let } y \text { be } \mathbf{I} \text { in } x) \\
& \rightarrow \mathbf{I}
\end{aligned}
$$

$\rightarrow$ Linear duplication by selection and erasure:

## Linear erasure and duplication in $\mathrm{IMLL}_{2}$

- Linear erasure by consumption of data:

$$
\mathrm{E}_{\mathbf{B}} \triangleq \lambda z . \text { let } z \mathbf{I} \text { be } x, y \text { in }(\text { let } y \text { be } \mathbf{I} \text { in } x)
$$

- Example:

$$
\begin{aligned}
\mathrm{E}_{\mathbf{B}} \underline{0} & \rightarrow \text { let }(\lambda x \cdot \lambda y \cdot x \otimes y) \| \text { be } x, y \text { in }(\text { let } y \text { be } \mathbf{I} \text { in } x) \\
& \rightarrow \text { let } \mathbf{I} \otimes \mathbf{I} \text { be } x, y \text { in }(\text { let } y \text { be } \mathbf{I} \text { in } x) \\
& \rightarrow \mathbf{I}
\end{aligned}
$$

- Linear duplication by selection and erasure:

$$
\mathrm{D}_{\mathrm{B}} \triangleq \lambda z \cdot \pi_{1}(z(\underline{0} \otimes \underline{0})(\underline{1} \otimes \underline{1}))
$$

- Example:

$$
\begin{aligned}
\mathrm{D}_{\mathbf{B}} & \rightarrow \pi_{1}((\lambda x \cdot \lambda y \cdot y \otimes x)(\underline{0} \otimes \underline{0})(\underline{1} \otimes \underline{1})) \\
& \rightarrow \pi_{1}((\underline{1} \otimes \underline{1}) \otimes(\underline{0} \otimes \underline{0})) \\
& \rightarrow \underline{1} \otimes \underline{1}
\end{aligned}
$$

- Generalizing linear erasure and duplication to closed $\Pi_{1}$ types (no negative $\forall$ ):

| B | $\mapsto$ | closed $\Pi_{1}$ |
| :---: | :---: | :---: |
| $=$ | $=$ |  |

boolean data type finite data types

- Theorem [Mairson\&Terui 03]:

| $A$ closed $\Pi_{1}$ | $\mapsto$ | $E_{A}$ |
| :--- | :--- | :--- |
| $A$ closed $\Pi_{1}+$ inhabited | $\mapsto$ | $D_{A}$ |

- Generalizing linear erasure and duplication to closed $\Pi_{1}$ types (no negative $\forall$ ):

| $\mathbf{B}$ | $\mapsto$ | closed $\Pi_{1}$ |
| :---: | :---: | :---: |
| $=$ | $=$ |  |

boolean data type finite data types

- Theorem [Mairson\&Terui 03]:

$$
\begin{array}{ll}
A \text { closed } \Pi_{1} & \mapsto E_{A} \\
A \text { closed } \Pi_{1}+\text { inhabited } & \mapsto \\
D_{A}
\end{array}
$$

- Proposition [Curzi\&Roversi 20]: $\operatorname{size}\left(\mathrm{D}_{A}\right)$ is exponential w.r.t size $(A)$.
- Sketch: $\mathrm{D}_{A}$ stores any result of duplication $M \otimes M$, where $M$ is a closed normal inhabitant of $A$.


## Translation into $\mathrm{IMLL}_{2}$

- Translation (_) : LAM $\rightarrow \mathrm{IMLL}_{2}$ :

$$
\begin{gathered}
\mathcal{D} \\
x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash_{\mathrm{LAM}} M: B \quad \mapsto \quad x_{1}: A_{1}^{\bullet}, \ldots, x_{n}: A_{n}^{\bullet} \vdash_{\mathrm{IMLL}_{2}} \mathcal{D}^{\bullet}: B^{\bullet}
\end{gathered}
$$

- Intuitively:

$$
\begin{array}{cll}
\text { closed } \forall \text {-lazy }(\&) & \mapsto & \text { closed } \Pi_{1} \quad(\otimes) \\
\frac{\mathcal{D}_{1}}{x: A \vdash M: B \quad y: A \vdash N: C} \vdash \cdot V: A \\
x: A \vdash \operatorname{copy}^{V} x \text { as } x, y \text { in }\langle M, N\rangle: B \& C & \mapsto & \text { let } D_{A} \bullet x \text { be } x \otimes y \text { in } \mathcal{D}_{1}^{\bullet} \otimes \mathcal{D}_{2}^{\bullet} \\
\mathcal{D} & & \\
\frac{\Gamma, x: A \vdash M: C}{\Gamma, y: A \& B \vdash M\left[\pi_{1}(y) / x\right]: C} & \mapsto & \text { let } x \text { be } x \otimes x^{\prime} \text { in }\left(\text { let } E_{B} \bullet x^{\prime}\right. \\
& & \text { be } \left.\operatorname{lin} \mathcal{D}^{\bullet}\right)
\end{array}
$$

## Basic properties of the translation

- Theorem [Soundness of ()$^{\bullet}$ ] If $\mathcal{D} \rightsquigarrow{ }_{\text {cut }} \mathcal{D}^{\prime}$ in LAM, then $\mathcal{D}^{\bullet} \rightarrow_{\beta \eta}^{*} \mathcal{D}^{\boldsymbol{\bullet}}$.
- Sketch. The cut-elimination step for:

$$
\begin{aligned}
& \mathcal{D}_{1} \quad \mathcal{D}_{2} \\
& \frac{\frac{\mathcal{D}}{\vdash V: A} \times \quad \frac{x_{1}: A \vdash M_{1}: B_{1} \quad x_{2}: A \vdash M_{2}: B_{2} \quad \vdash U: A}{x: A \vdash \operatorname{copy}{ }^{U} x \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \text { cut }}{\vdash \operatorname{copy}^{U} V \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}}
\end{aligned}
$$

is represented in $\mathrm{IMLL}_{2}$ by:

$$
\text { let } \mathrm{D}_{A} \mathcal{D}^{\bullet} \text { be } x \otimes y \text { in } \mathcal{D}_{1}^{\bullet} \otimes \mathcal{D}_{2}^{\bullet} \rightarrow_{\beta \eta}^{*} \mathcal{D}_{1}^{\bullet}\left[\mathcal{D}^{\bullet} / x\right] \otimes \mathcal{D}_{1}^{\bullet}\left[\mathcal{D}^{\bullet} / x\right]
$$

## Basic properties of the translation

- Theorem [Soundness of ()$^{\bullet}$ ] If $\mathcal{D} \rightsquigarrow{ }_{\text {cut }} \mathcal{D}^{\prime}$ in LAM, then $\mathcal{D}^{\bullet} \rightarrow_{\beta \eta}^{*} \mathcal{D}^{\boldsymbol{\bullet}}$.
- Sketch. The cut-elimination step for:

$$
\begin{aligned}
& \mathcal{D}_{1} \quad \mathcal{D}_{2} \\
& \frac{\frac{\mathcal{D}}{\vdash V: A} \times \quad \frac{x_{1}: A \vdash M_{1}: B_{1} \quad x_{2}: A \vdash M_{2}: B_{2} \quad \vdash U: A}{x: A \vdash \operatorname{copy}^{U} x \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}} \text { }}{\qquad \text { copy }{ }^{U} V \text { as } x_{1}, x_{2} \text { in }\left\langle M_{1}, M_{2}\right\rangle: B_{1} \& B_{2}}
\end{aligned}
$$

is represented in $\mathrm{IMLL}_{2}$ by:

$$
\text { let } D_{A} \mathcal{D}^{\bullet} \text { be } x \otimes y \text { in } \mathcal{D}_{1}^{\bullet} \otimes \mathcal{D}_{2}^{\bullet} \rightarrow_{\beta \eta}^{*} \mathcal{D}_{1}^{\bullet}\left[\mathcal{D}^{\bullet} / x\right] \otimes \mathcal{D}_{1}^{\bullet}\left[\mathcal{D}^{\bullet} / x\right]
$$

- Theorem [Exponential compression] If $\mathcal{D}$ is a derivation of $\Gamma \vdash_{\text {LAM }} M: A$, then $\operatorname{size}\left(\mathcal{D}^{\bullet}\right)$ can be exponential w.r.t $\operatorname{size}(\mathcal{D})$.
- Sketch. $\operatorname{size}\left(\mathrm{D}_{A}\right) \in \mathcal{O}\left(2^{\text {size }(A)^{2}}\right)$.


# (1) The system LAM and basic properties 

(2) A translation of LAM into $\mathrm{IMLL}_{2}$
(3) Perspectives
(4) Appendix

- Linear additives based on the Linear Logic additive disjunction $\oplus$ ?

|  | additives | linear additives |
| :---: | :---: | :---: |
| conjunction | $\&$ | $\wedge$ |
| disjuncton | $\oplus$ | $\vee$ |

## [Ronchi\&Gaboardi 08]:


"non-deterministic linear additives" to capture NP regardless of the reduction strategy.

- Linear additives based on the Linear Logic additive disjunction $\oplus$ ?

|  | additives | linear additives |
| :---: | :---: | :---: |
| conjunction | $\&$ | $\wedge$ |
| disjuncton | $\oplus$ | $\vee$ |

- STA+ [Ronchi\&Gaboardi 08]:

$$
\frac{\Gamma \vdash M: A \quad \Gamma \vdash N: A}{\Gamma \vdash M+N: A} \operatorname{sum} \quad M \leftarrow M+N \rightarrow N
$$

"non-deterministic linear additives" to capture NP regardless of the reduction strategy.

- Linear additives based on the Linear Logic additive disjunction $\oplus$ ?

|  | additives | linear additives |
| :---: | :---: | :---: |
| conjunction | $\&$ | $\wedge$ |
| disjuncton | $\oplus$ | $\vee$ |

- STA+ [Ronchi\&Gaboardi 08]:

$$
\frac{\Gamma \vdash M: A \quad \Gamma \vdash N: A}{\Gamma \vdash M+N: A} \operatorname{sum} \quad M \leftarrow M+N \rightarrow N
$$

"non-deterministic linear additives" to capture NP regardless of the reduction strategy.

- Same approach to capture PP and BPP (work in progress)?


## Thank you! <br> Questions?

Appendix

## How duplicators work

Let $A$ be a closed $\Pi_{1}$ type. The duplicator of $A$, written $D_{A}$, implements two operations on a closed normal inhabitant $V$ of $A$ :

- encode $V$ as a Boolean tuple $\lceil V\rceil$;
- copy and decode $\lceil V\rceil$ to obtain $V \otimes V$.



## How duplicators work

Let $A$ be a closed $\Pi_{1}$ type. The duplicator of $A$, written $D_{A}$, implements two operations on a closed normal inhabitant $V$ of $A$ :

- encode $V$ as a Boolean tuple $\lceil V\rceil$;
- copy and decode $\lceil V\rceil$ to obtain $V \otimes V$.


