
scuola di dottorato
in scienze della natura
e tecnologie innovative
indirizzo informatica

école doctorale no 386
sciences mathématiques

de paris centre
spécialité informatique

Thèse de Doctorat en Cotutelle

Non-Laziness in Implicit Computational
Complexity and Probabilistic λ-calculus

Gianluca Curzi

Directeur: Luca Roversi Co-directeur: Michele Pagani

Présentée et soutenue publiquement le 12 juin 2020, devant un jury composé de:

M. Patrick Baillot (Examinateur) Directeur de recherche, CNRS, ENS Lyon
M. Ugo Dal Lago (Rapporteur) Professeur, Università Bologna
Mme Claudia Faggian (Examinatrice) Chargée de recherche, CNRS, Université de Paris
M. Alessio Guglielmi (Rapporteur) Professeur, University of Bath
M. Michele Pagani (Co-directeur) Professeur, Université de Paris
M. Luca Roversi (Directeur) Professeur, Università di Torino
M. Lorenzo Tortora De Falco (Examinateur) Professeur, Università Roma Tre

Abstract

This thesis explores the benefits of non-laziness in both Implicit Computational Complexity and
probabilistic computation. More specifically, this thesis can be divided in two main parts. In
the first one, we investigate in all directions the mechanisms of linear erasure and duplication,
which lead us to the type assignment systems LEM (Linearly Exponential Multiplicative Type
Assignment) and LAM (Linearly Additive Multiplicative Type Assignment). The former is able
to express weaker versions of the exponential rules of Linear Logic, while the latter has weaker
additive rules, called linear additives. These systems enjoy, respectively, a cubic cut-elimination
and a linear normalization result. Since linear additives do not require a lazy evaluation to avoid
the exponential blow up in normalization (unlike the standard additives), they can be employed
to obtain an implicit characterization of the functions computable in probabilistic polynomial
time that does not depend on the choice of the reduction strategy. This result is achieved in
STA⊕, a system that extends STA (Soft Type Assignment) with a randomized formulation of
linear additives. Also, this system is able to capture the complexity classes PP and BPP. The
second part of the thesis is focused on the probabilistic λ-calculus endowed with an operational
semantics based on the head reduction, i.e. a non-lazy call-by-name evaluation policy. We prove
that probabilistic applicative bisimilarity is fully abstract with respect to context equivalence.
This result witnesses the discriminating power of non-laziness, which allows to recover a perfect
match between the two equivalences that was missing in the lazy setting. Moreover, we show
that probabilistic applicative similarity is sound but not complete for the context preorder.

iii

Résumé de thèse

Cette thèse explore les avantages de la “non-paresse” dans la Complexité Computationnelle Im-
plicite et dans le lambda calcul probabiliste. Plus précisément, cette thèse peut être divisée en
deux parties principales. Dans la première, nous étudions dans tous les sens les mécanismes
d’effacement et de duplication linéaire, à la fois dans le lambda calcul linéaire et dans le système
IMLL2. Cette analyse nous conduit au système LEM (Linearly Exponential Multiplicative Type
Assignment), capable d’exprimer des versions plus faibles des règles exponentielles de la Logique
Linéaire. LEM satisfait la propriété de réduction du sujet et une forme “paresseux” d’élimination
des coupures qui prend du temps cubique. Nous définissons également une traduction de LEM
à IMLL2. Cette traduction nous montre que les règles exponentielles de LEM compressent ex-
ponentiellement les mécanismes d’effacement et de duplication linéaire de IMLL2. Enfin, nous
explorons les avantages de cette compression, en codant à la fois les circuits booléens et les
nombres naturels de manière compacte. De plus, nous introduisons un deuxième système, LAM
(Linearly Additive Multiplicative Type Assignment), équipé d’une version plus faible des règles
additives de la Logique Linéaire, appelées additifs linéaires. Ce système satisfait une normali-
sation linéaire, évitant ainsi le problème de l’explosion exponentielle des additifs standard sans
utiliser de stratégies de réduction paresseuse. Nous étudions également une traduction de LAM en
IMLL2 similaire à celle de LEM. Étant donné que les additifs linéaires sont “inoffensifs” du point
de vue de la complexité computationnelle, ils seront utilisés pour obtenir une caractérisation
implicite des fonctions calculables en temps polynomial probabiliste qui ne dépend pas du choix
des stratégies de réduction. Ce résultat a été réalisé dans STA⊕, un système obtenu en dotant
STA (Soft Type Assignment) d’une formulation probabiliste des additifs linéaires. STA⊕ est un
système de typage pour un calcul des termes confluent, et satisfait la propriété de réduction
du sujet. Enfin, nous montrerons que STA⊕ capture les classes de complexité probabiliste PP
(Probabilistic Polynomial time) et BPP (Bounded-error Probabilistic Polynomial time), même
si la caractérisation du BPP est moins “implicite”. La deuxième partie de la thèse se concentre
sur le lambda calcul probabiliste non typé Λ⊕ doté d’une sémantique opérationnelle basée sur
la réduction de tête, c’est-à-dire une politique d’évaluation non-paresseuse de l’appel par nom.
Nous prouverons que la bisimilarité probabiliste est “fully abstract” par rapport à l’équivalence
observationnelle. Ce résultat témoigne le pouvoir discriminant de la non-paresse, qui permet de
retrouver une correspondance parfaite entre les deux équivalences, qui manquait dans le cadre
paresseuse. Plus précisément, la sémantique opérationnelle que nous donnerons implémentera la
soi-disant “head spine reduction”, une variante de la réduction de tête. Nous montrerons donc
que les deux stratégies sont équivalentes, c’est-à-dire que la probabilité qu’un terme converge vers
une forme de tête normale donnée est la même pour les deux stratégies de réduction. D’une côté,
la head spine reduction nous permettra de prouver plus facilement le théorème de correction.
D’autre côté, l’équivalence entre les deux stratégies de réduction nous permettra de montrer
le théorème de complétude en utilisant le théorème de séparation de Leventis dans le contexte
des arbres de Nakajima probabilistes. Enfin, nous montrerons que la similarité probabiliste est

v

correcte mais pas complète par rapport à le préordre observationnel à travers un contre-exemple,
en discutant également comment un résultat de complétude pourrait être obtenu dans un calcul
étendu avec le “parallel or” de Plotkin.

Acknowledgements

I would like to sincerely express my gratitude to my supervisor Luca Roversi and my co-supervisor
Michele Pagani for their precious and constant help and for having transmitted to me their
enthusiasm in doing research.

I am also grateful to Ugo Dal Lago and Alessio Guglielmi, who kindly accepted to review this
thesis.

I owe a great debt to Felice Cardone and Luca Paolini, for their stimulating discussions about
category theory and the foundations of computing, that have been source of great inspiration to
me.

I would like to thank Francesco, Stefano, Noemi, Valentina, Milena, Antonio, Livio, Elena,
Ruggero (and whoever I forgot to report). I spent valuable moments with all of them. I am also
grateful to all my colleagues in Paris. I am particularly indebted with Jules, Leonard and Daniel,
who passionately helped me in learning French (my poor French!). I had intriguing conversations
with them about science, logic and mathematics that made unforgettable my stay in Paris.

A personal thank goes to my family, who always and unconditionally supports me, and to
my friends Gianluca, Matteo and Gabriele. Finally, a special acknowledgement goes to Federica,
whose infinite patience and continuous encouragement throughout these years made this thesis
possible.

vii

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Content of the thesis . 4

2 Background 5
2.1 The Curry-Howard isomorphism . 5

2.1.1 Church’s λ-calculus . 5
2.1.2 Simply typed λ-calculus . 6
2.1.3 Gentzen’s proof systems . 7
2.1.4 Between logic and computation . 8

2.2 Linear Logic . 9
2.2.1 Toward Linear Logic . 9
2.2.2 Linear Logic and its fragments . 11
2.2.3 Simpson’s Linear Lambda Calculus . 12

2.3 Implicit Computational Complexity . 13
2.3.1 Turing Machines . 13
2.3.2 Computational Complexity . 14
2.3.3 Implicit Computational Complexity . 14

2.4 Bisimulation and coinduction . 16
2.5 Notational conventions and basic definitions . 17

2.5.1 Standard notation . 17
2.5.2 Relations and distributions . 18
2.5.3 Typed and untyped calculi . 19

3 A Type Assignment of Linear Erasure and Duplication 21
3.1 Duplication and erasure in the linear λ-calculus 23

3.1.1 The linear λ-calculus and IMLL2 . 23
3.1.2 The untyped setting . 25
3.1.3 The typed setting . 28

3.2 The Duplication Theorem . 31
3.2.1 The linear λ-term subsA . 31
3.2.2 The linear λ-term encsA . 35
3.2.3 The linear λ-term decsA . 39

3.3 The system LEM and basic properties . 40
3.3.1 The system LEM . 40
3.3.2 Cut-elimination and its cubical complexity 44
3.3.3 Subject reduction . 49

ix

3.3.4 Translation of LEM into IMLL2 and exponential compression 50
3.4 The expressiveness of LEM and applications . 54

3.4.1 Boolean circuits in LEM . 55
3.4.2 Numerals in LEM . 59

4 Linear Additives and Probabilistic Polynomial Time 63
4.1 Linear additives . 65

4.1.1 Toward linear additives: IMALL2 and the exponential blow up 65
4.1.2 The system LAM . 69
4.1.3 Subject reduction and linear normalization 72
4.1.4 Translation of LAM into IMLL2 and exponential compression 76

4.2 The system STA⊕ . 79
4.2.1 Soft Type Assignment . 79
4.2.2 The system STA⊕ . 82

4.3 Polytime soundness . 87
4.3.1 Confluence . 88
4.3.2 Weighted subject reduction . 93
4.3.3 The Polytime Soundness Theorem . 100

4.4 Polytime completeness . 103
4.4.1 Strings, numerals and polynomial completeness 104
4.4.2 Encoding the polytime PTM . 106
4.4.3 Characterizing probabilistic complexity classes 111

5 The Benefit of Being Non-Lazy
in Probabilistic λ-calculus 115
5.1 Preliminaries . 118

5.1.1 The probabilistic λ-calculus Λ⊕ . 118
5.1.2 Head reduction and head spine reduction 123
5.1.3 Context equivalence . 124
5.1.4 Probabilistic (bi)similarity . 127
5.1.5 Probabilistic applicative (bi)similarity . 129

5.2 The head spine reduction is equivalent to the head reduction 131
5.2.1 Equivalence in a term-based setting . 132
5.2.2 The term-based and the distribution-based semantics coincide 135

5.3 Soundess . 139
5.3.1 The Context Lemma . 139
5.3.2 The Soundness Theorem . 141

5.4 Full abstraction . 146
5.4.1 Probabilistic Nakajima trees . 147
5.4.2 The Completeness Theorem . 149
5.4.3 PAS is not complete . 152
5.4.4 Recovering full abstraction for PAS: a conjecture 155

6 Conclusion and future developments 159

Bibliography 163

x

Chapter 1

Introduction

This thesis concerns two distinct topics in theoretical computer science that quite recently started
interacting with fruitful implications, namely Implicit Computational Complexity (ICC) and
probabilistic computation. ICC is a branch of computational complexity originated in the nineties
and its goal is to capture the inherent principles of bounded computation by means of languages
or calculi that do not directly rely on machine models nor explicit restrictions on resources. A
special attention in ICC is paid to those computational problems which are “tractable”, i.e. that
can be solved efficiently, requiring for example a polynomial amount of time with respect to the
input size. Indeed, one of the purposes of ICC is to suggest new techniques to statically verify
the runtime of a program, where efficiency is a desideratum.

The need for faster algorithms to solve real world problems has attracted along the years
a growing interest in probabilistic programming, where random choices are permitted during
execution. Randomized programs can be more efficient with respect to deterministic programs,
at the cost of allowing wrong answers. One of the main issues in the design of randomized
algorithms is to obtain a highly trustworthy output.

The degree of accuracy in returning the correct answer is among the features discriminating a
probabilistic complexity class. For example, the class BPP (Bounded-error Probabilistic Polyno-
mial time) collects all problems solvable by randomized algorithms running in polynomial time
with error probability bounded by a constant strictly smaller than a half. A striking aspect of
this class is that the error probability can in principle be reduced at will while incurring only a
polynomial slowdown, so increasing the reliability of the answer without affecting the efficiency.

Starting from Mitchell et al. [72], several attempts have been made to capture the probabilistic
polynomial time in the style of ICC by means of higher-order languages. Examples are Zhang [95]
or Dal Lago and Toldin [28]. In particular, the latter work also discusses the inherent difficulties
of characterizing the class BPP implicitly, due to the presence of external error bounds. Recently,
Seiller has proposed a promising semantic approach to ICC based on the notion of Interaction
Graphs [83], showing how to capture the classes PL (Probabilistic Logarithmic space) and PP
(Probabilistic Polynomial time).

Beside probabilistic complexity, the pervasive role of stochastic models in computer science,
like in natural language processing [66], machine learning [75], formal verification [31] and cryp-
tography [47], has also stimulated foundational research in probabilistic λ-calculi, with a special
focus on program equivalence. Different operational techniques have been employed for un-
derstanding and reasoning about program equivalence, like context equivalence, which identifies
programs “behaving” the same in any possible programming context, or bisimilarity, identifying
programs that can “simulate” each other. The latter notion was previously studied in concur-

1

rency theory to equate processes and exploits coinductive proof methods, which are subject of
growing attention in the literature [80, 81].

A common thread in program equivalence and ICC is the crucial role played by the reduction
strategies, especially in a (probabilistic) higher-order setting. On the one hand, recovering con-
fluence in probabilistic higher-order calculi requires a specific calling mechanism to discriminate
between duplicating a function which performs a choice and duplicating the choice [29]. On the
other hand, both the notions of program equivalence and of implicit characterization are sensitive
to the choice of the evaluation policy. Concerning the former, it has been shown for example
that bisimilarity is strictly finer than context equivalence in the (lazy) call-by-name probabilistic
λ-calculus [27], while the two relations perfectly match in the call-by-value setting [22]. Con-
cerning implicit complexity, both PSPACE (Polynomial Space) and NPTIME (Non-deterministic
Polynimial time) have been characterized by means of extensions of the type assignment sys-
tem STA (Soft Type Assignment) [38], but special reduction strategies are required to avoid an
exponential blow up in normalization. These complexity classes cannot be captured by an inner-
most evaluation policy, because this would let the size of a term and the number of its redexes
grow exponentially. A variant of the leftmost outermost strategy is needed, which delays the
substitutions coming from β-reduction as long as possible.

A discriminating aspect in the choice of the reduction strategy in (probabilistic) higher-order
calculi is laziness. It allows to “freeze” the evaluation, typically inside a constructor, according
to the principle of producing as little information as possible at each step of the computation.
In ICC, lazy evaluation has been employed to recover a polytime normalization in presence of
additive-like rules [44]. In the (probabilistic) λ-calculus lazy reduction strategies, such as (lazy)
call-by-name or call-by-value, forbid evaluation inside the scope of any abstraction, so that λx.M
is a value whatever M is. By contrast, in a non-lazy policy, such as non-lazy call-by-name (often
called head reduction), we keep reducing what is inside the abstraction. Switching from a lazy
to a non-lazy strategy we affect the notion of program equivalence, whether this is defined in
terms of context equivalence or bisimilarity.

The fundamental objective of this thesis is to show the benefits of being “non-lazy” both in
ICC and in the probabilistic λ-calculus:

• on the one hand, the choice of a lazy strategy to prevent exponential explosions in presence
of the additive rules can be avoided by adopting a weaker notion of additive relying on
Mairson and Terui’s linear erasure and duplication [64, 65], that can be used for implicit
characterizations of the probabilistic polynomial time regardless of the reduction strategy
considered;

• on the other hand, “non-laziness” is the key step to recover the missing match between
bisimilarity and context equivalence in the call-by-name probabilistic λ-calculus.

1.1 Contributions

In this section we present the main contributions of each chapter.

Chapter 3.

• We give a complete and detailed proof of the Duplication Theorem (Section 3.2), that
assures the existence of a linear “duplicator” for all closed and normal inhabitants of a
special class of types in IMLL2, representing finite data types. This proof was only sketched
by Mairson and Terui in [65], and amounts to show the existence of two linear λ-terms in

2

IMLL2: a “compiler”, able to map each closed and normal inhabitant M into a linear λ-
term dMe representing the encoding of M , and a “decoder”, able to map dMe back to a
pair containing two copies of M . Constructing the duplicator is a hard task, essentially
because the language of IMLL2 is quite poor, and requires several preliminary results. In
particular, we show in Lemma 36 of Section 3.3.4 that the size of a duplicator of type A is
exponential in the size of A. We widely apply the Duplication Theorem in both Chapter 3
and Chapter 4, because it allows to express a weaker form of contraction.

• We introduce a new system, LEM (Linearly Exponential Multiplicative Type Assignment),
that extends IMLL2 with primitive rules for Mairson and Terui’s linear weakening and
contraction [65], so compressing in a single step the exponential mechanism of duplication
in IMLL2 (see the previous point). A fundamental advantage of this compression is that
LEM allows for more compact and modular representations of boolean circuits and natural
numbers, as opposed to their respective encodings in IMLL2 [65, 64].

Chapter 4.

• We introduce a new system, LAM (Linearly Additive Multiplicative Type Assignment), that
extends IMLL2 with a weaker version of the additive rules called linear additives, which are
based on the mechanisms of linear weakening and contraction [65]. LAM can be seen as
a restricted formulation of IMALL2. In the latter, normalization can be exponential (both
in time and space), and one can recover a linear normalization only by adopting specific
reduction strategies, like lazy reduction (see [45, 44]). By contrast LAM enjoys a linear
strong normalization, so that lazy reduction is not needed.

• We present a new system, STA⊕, that combines a probabilistic version of linear additives
(see the previous point) with STA (Soft Type Assignment) [40], and is able to capture the
probabilistic polynomial time functions as well as the classes PP and BPP: on the one
hand, linear additives are costless from a complexity-theoretic viewpoint, so the system
inherits in a natural way the polynomial bound on normalization from STA; on the other
hand, they are expressive enough to encode the transition function of a Probabilistic Turing
Machine, a fundamental ingredient to obtain polytime completeness. To our knowledge,
this is the first characterization result in a probabilistic setting that is close to the style
of light logics. Previous characterizations have been achieved through extensions of SLR
(Safe Linear Recursion) [49], as for example [95, 28]. Moreover, as opposed to such previous
works, our characterization does not depend on the choice of a reduction strategy.

Chapter 5.

• We prove that the head reduction and the head spine reduction [84] are equivalent in the
probabilistic λ-calculus, meaning that the probability that a given term M converges to a
certain head normal form in exactly n steps of reduction is the same for both evaluation
strategies (Section 5.2). As a straightforward consequence, we get a similar equivalence in
the standard λ-calculus: a term M converges to a head normal form H in exactly n steps
according to head reduction if and only if it does so according to head spine reduction. As
far as we know, this result is not in the literature, even in the deterministic case. Switching
from head reduction to head spine reduction can be often convenient. For example, the
big-step presentation of the head spine reduction is more compact with respect to head
reduction, the latter requiring a further big-step relation based on (lazy) call-by-name
evaluation (relating terms with distributions of weak head normal forms), so doubling the
number of rules (see Section 5.1.2).

3

• We prove that probabilistic applicative bisimilarity is fully abstract with respect to non-lazy
call-by-name (or head) context equivalence in the probabilistic λ-calculus (Theorem 134
of Section 5.4.2). In a sense, this theorem completes the picture by providing the missing
coinductive characterization to the previously established full abstraction results concerning
denotational models [20, 61], game semantics [20], and probabilistic Nakajima trees [60, 61].
In particular, as a straightforward consequence of Theorem 134 and [92], we can infer
that testing equivalence is fully abstract for the head context equivalence. Also, we show
that probabilistic applicative similarity is sound but not complete (hence fully abstract)
with respect to the head context preorder, the latter result being achieved by means of a
counterexample.

1.2 Content of the thesis
This thesis consists of two main parts. The first one is focused on ICC and investigates several
type assignment systems based on Linear Logic, while the second one concerns the probabilistic
λ-calculus and the related operational techniques for program equivalence. In the following, we
offer a brief overview of the content of each chapter.

Chapter 3. We study erasability and duplication in the linear λ-calculus and in the corre-
sponding type assignment IMLL2. Then, we introduce the type system LEM, able to exponen-
tially compress Mairson and Terui’s mechanisms of linear weakening and contraction [65], and we
establish some basic computational and proof-theoretical properties, like subject reduction and
a “lazy” form of cut-elimination. Also, we define a translation of the system into IMLL2, proving
a simulation property. Last, we explore some applications of LEM by encoding in a compact way
boolean circuits and natural numbers.

Chapter 4. In order to deal with additive rules without incurring an exponential blow up in
normalization, we designed LAM, a type system based on Mairson and Terui’s linear weakening
and contraction [65]. LAM is endowed with restricted additive rules called linear additives, that
enjoy a linear time normalization. Then we present a probabilistic version of STA [40], called
STA⊕, whose probabilistic features are given by a non-deterministic variant of linear additives.
STA⊕ is able to capture in a natural way the probabilistic polynomial time as well as the classes
PP and BPP.

Chapter 5. We present the untyped probabilistic λ-calculus Λ⊕ endowed with an operational
semantics based on the head spine reduction that, as we show, is an equivalent variant of the head
reduction. Then prove that probabilistic applicative bisimilarity is fully abstract with respect to
context equivalence. Soundness is established by means of a context lemma, while completeness
relies on a fundamental separation result from [60]. Last, we show that probabilistic applicative
similarity is sound but not complete with respect to context preorder using a counterexample.

4

Chapter 2

Background

In the following sections we give an overview of the basic notions and results from the main areas
of computer science this thesis is based on, such as the Curry-Howard isomorphisms paradigm,
Linear Logic, Implicit Computational Complexity, bisimulation and coinductive methods. We
conclude by introducing some preliminary definitions and notational conventions.

2.1 The Curry-Howard isomorphism

2.1.1 Church’s λ-calculus
The λ-calculus is a model of computation introduced by Alonzo Church in the 1930s. It is defined
as a formal language of λ-terms, endowed with a rewriting rule called β-reduction. The λ-terms
are generated by the following grammar:

M := x | λx.M | MM

where x is taken from a denumerable set of variables. The expression λx.M is called abstraction
and binds the variable x, while the expression MN is called application. The β-reduction rule is
the following:

(λx.M)N →β M [N/x]

where M [N/x] denotes the meta-level substitution of N for the free occurrences of the variable
x in M .

Roughly, an abstraction λx.M represents a function, the expression MN represents the ap-
plication of the function M to an argument N , and β-reduction “computes” the result of the
function application (λx.M)N . To motivate this intuition, we consider a simple example.

Example 1. Suppose we are given the polynomial x2− 2x+ 5 and we want to evaluate it when
x = 2. In this case we replace x with 2 in the expression and we obtain 22 − 2 · 2 + 5. By
carrying out some basic arithmetic operations, we eventually get the value 5. In the λ-calculus,
this procedure can be done in three steps. First, we use the λ-operator to turn the expression
x2 − 2x+ 5 into a function M , λx.(x2 − 2x+ 5), which abstracts over x and waits for a value
replacing the variable (in our case an integer). Then we apply the function M to the argument
2, i.e. we consider the term M2. Last, we compute M2 by applying the β-reduction:

(λx.(x2 − 2x+ 5)) 2→β 22 − 2 · 2 + 5

that gives 5 as a result.

5

The above example mixes λ-terms with “external” mathematical functions, such as additions
and products. However, despite its simplicity, the λ-calculus is able to express all arithmetic
operations, so that M2 in Example 1 can be turned into a λ-term, and the evaluation of M2 can
be entirely represented as a sequence of β-reduction steps. Actually, the λ-calculus is Turing-
complete, i.e. powerful enough to encode all number-theoretic functions that are computable by
a Turing Machine.

2.1.2 Simply typed λ-calculus

In mathematics, the definition of a particular function usually includes a statement of the kind of
inputs it will accept, and the kind of outputs it will produce. For example, the squaring function
accepts integers n as inputs and produces integers n2 as outputs, and the zero-test function
accepts integers and produces Boolean values (“true” or “false” according as the input is zero or
not).

Corresponding to this way of defining functions, the λ-calculus can be modified by attaching
types to λ-terms, i.e. labels denoting their input and output sets. The most elementary examples
of types are called simple types, and are generated by the following grammar:

σ := α | A→ A

where α is taken from a denumerable set of type variables, and A→ B is called function type.
There are two different strategies in attaching types to terms, that give rise to different

systems: the Church-style simply typed λ-calculus, or λCh→ for short, and the Curry-style simply
typed λ-calculus, or λCu→ for short. In λCh→ types are introduced in the very definition of λ-term:

• each λ-variable x is associated with a type A, written xA;

• given xA and MB we construct the typed λ-term (λxA.MB)A→B ;

• given MA→B and NA, we construct the typed λ-term (MA→BNA)B .

In λCh→ each variable comes with a type, so that the type of a λ-term is fixed. For example,
(λxA.xA)A→A is the identity function with type A→ A. A different approach is adopted in the
Curry-style simply typed λ-calculus, where λx.x is a general identity function that can receive
any type of shape C → C. In this case, a type A is assigned to a λ-term M , written M : A, with
the purpose of giving informations about the shape of terms it can “safely” be applied to.

The most basic assignment in λCu→ is called declaration. A declaration is an expression x : A,
where x is a λ-variable, called subject, and A is a type, called predicate. Starting with declarations
we can construct derivation trees assigning types to terms by applying the following rules:

[x : A]
...

M : B

λx.M : A→ B
abs

M : A→ B N : A

MN : B
app

where the square brackets are added to all declarations of the shape x : A (if any) above the
place where the instance of abs is applied, and identify that all such x : A are “discharged”, i.e. no
longer available.

Example 2. The following is a derivation tree of λxy.x : A→ B → A:

6

[x : A]
abs

λy.x : B → A
abs

λxy.x : A→ B → A

notice that the declaration y : B has been “vacuously” discharged.

In the Curry-style simply-typed λ-calculus there exist λ-terms that receive no type, like the
“self-application” λx.xx, and the same happens in λCh→ .

2.1.3 Gentzen’s proof systems
In 1935 Gerhard Gentzen [41] introduced two new proof systems for logic, called natural deduction
and sequent calculus, which are now considered as standard in proof theory [90]. The starting
point of his work was the analysis of mathematical proofs as they occur in practice. Gentzen
pointed out that Hilbert’s axiomatic formulation of logic cannot suitably express mathematical
reasoning, and proposed natural deduction as a rigorous (but natural) counterpart for it.

We now briefly recall the natural deduction presentation of the implicative fragment of intu-
itionistic logic (system NJ⇒). Its formulas are generated by the following grammar:

A := α | A⇒ A

where α is taken from a denumerable set of propositional variables. In natural deduction we
don’t have axioms, but only assumptions and inference rules. An assumption is an expression
Ax, were A is a formula, and x is taken from a denumerable set of variables. Starting from the
assumptions we can construct derivation trees by applying instances of the following inference
rules:

[Ax]
...
B

A⇒ B
⇒I

A⇒ B A

B
⇒E

where the square brackets are added to all assumptions of the shape Ax (if any) above the place
where the instance of ⇒I is applied, and identify that all Ax are “discharged”, i.e. no longer
available.

In natural deduction, each connective comes with two rules, one introducing it and the other
eliminating it. In NJ⇒ the introduction rule for the implication is⇒I, its elimination rule is⇒E.

Example 3. The following is a derivation of (A⇒ B ⇒ C)⇒ (A⇒ B)⇒ (A⇒ C):

(A⇒ B ⇒ C)x Az
⇒E

B ⇒ C

(A⇒ B)y Az
⇒E

B ⇒E
C ⇒I(z)

A⇒ C ⇒I(y)
(A⇒ B)⇒ A⇒ C

⇒I(x)
(A⇒ B ⇒ C)⇒ (A⇒ B)⇒ A⇒ C

where the notation (x) is used to highlight the assumption packet that has been discharged.

Gentzen noticed that natural deduction derivations may contain “detours”, i.e. redundant
steps where a connective is first introduced and then eliminated. To remove all detours from a
derivation, he defined a procedure of “detour conversion”. The typical detour for the implication,
and its related conversion, are the following:

7

[Ax]

D
B ⇒I

A⇒ B
D′
A ⇒E

B

D′
A
D
B

in which each occurrence of the assumption [Ax] in the derivation D of B is replaced by a separate
copy of the derivation D′ of A. The process of eliminating detours is called proof normalization,
and a proof tree with no detour is called normal form.

Gentzen has shown that every natural deduction derivation of intuitionistic logic can be
turned into a normal form by normalization. Unfortunately, he was unable to extend this result
to classical logic. This led him to devise a second formalism: sequent calculus. This proof system
does not derive formulas, but sequents, i.e. expressions of the form Γ ` C, where C is a formula
and Γ is a multiset of formulas. Intuitively, a sequent Γ ` C represents a derivation of C from
the assumptions in Γ.

The sequent calculus presentation of the implicative fragment of intuitionistic logic (system
LJ⇒) is defined by the following rules:

x : A ` x : A
ax

Γ ` A ∆, A ` C
Γ,∆ ` C

cut
Γ, A ` B

Γ ` A⇒ B
⇒R

Γ ` A ∆, B ` C
Γ, A⇒ B,∆ ` C

⇒L

The rule ax represents a natural deduction assumption, while the rules ⇒R and ⇒L are the
sequent calculus counterparts of the rules ⇒I and ⇒E, respectively. Last, the rule cut plays the
role of detours, because it “cuts” the formula A appearing in both premises.

The fundamental result of Gentzen is the cut-elimination theorem, the analogous of proof
normalization in natural deduction, assuring that any sequent calculus derivation can be turned
into a cut-free one. As an immediate corollary of this theorem, Gentzen showed the existence of
unprovable formulas in the system, yielding a new technique for establishing logical consistency.

2.1.4 Between logic and computation
A fascinating aspect in theoretical computer science is the correspondence between various typed
λ-calculi and systems of formal logic, widely known as the Curry-Howard isomorphism.

This analogy was first noticed as a curious fact by Curry in 1934 [25, 26]. According to his
intuition, the function type “→” can be seen as an implication “⇒” in NJ⇒. On the one hand,
the rule ⇒I “constructs” a function that maps any element of A into an element of B. On the
other hand, the rule ⇒I “applies” a function f : A→ B to an element of A, yielding an element
of B.

Curry’s intuition was later refined by William Howard in 1969 (his ideas were reported in a
manuscript published in 1980 [51]). Howard understood that the connection between logic and
computation is a fundamental principle or a paradigm, rather than a mere curiosity. He showed
that the simply typed λ-calculus and the implicative fragment of intuitionistic logic perfectly
match:

• a formula can be seen as a type, where the intuitionistic implication “⇒” is syntactic sugar
for the function type “→”;

• a proof of A can be seen as a λ-terms with type A, where an assumption Ax is syntactic
sugar for the declaration x : A, the rule ⇒I corresponds to an abstraction, and the rule
⇒E corresponds to an application;

• finally, proof normalization corresponds to β-reduction.

8

The example below discuss the isomorphisms between NJ⇒ and λCu→ (a similar connection
can be established for λCh→ as well).

Example 4. Let us consider a derivation of NJ⇒:

[(A⇒ B ⇒ A)z] [Ax
′
]
⇒E

B ⇒ A [By
′
]
⇒E

A ⇒I(z)
(A⇒ B ⇒ A)⇒ A

[Ax]
⇒I(y)

B ⇒ A ⇒I(x)
A⇒ B ⇒ A

⇒E
A

This derivation corresponds to the λ-term (λz.zx′y′)(λxy.x) with type A in λCu→ . Now, if we
apply the proof normalization, we obtain:

[Ax]
⇒I(y)

B ⇒ A ⇒I(x)
A⇒ B ⇒ A [Ax

′
]
⇒E

B ⇒ A [By
′
]
⇒E

A

which corresponds to an application of the β-reduction step (λz.x′y′)(λxy.x) →β (λxy.x)x′y′.
The above derivation eventually reduces by proof normalization to a single assumption of Ax

′
,

which corresponds to the β-reduction steps (λxy.x)x′y′ →β (λy.x′)y′ →β x
′ leading to a variable

x′ of type A, i.e. a declaration x′ : A.

Since the 1969 work, various styles of presentations of logical systems (Hilbert style, natural
deduction, sequent calculus) have been shown to correspond to different models of computations
(combinatory logic, λ-calculus, explicit substitution calculi). Moreover, the Curry-Howard iso-
morphism has been gradually extended to give a computational interpretation of several proof-
theoretical concepts. For example, quantification in predicate logic corresponds to dependent
product, second-order logic is connected to polymorphism, and proofs by contradiction in clas-
sical logic are connected to control operators).

2.2 Linear Logic

2.2.1 Toward Linear Logic
Linear logic has been introduced by Jean-Yves Girard in his seminal work [46] as a refinement
of both classical and intuitionistic logic, able to combine the dualities of the former with the
constructive nature of the latter.

To motivate the need for this new logic, we start by analysing the structural rules weakening
and contraction in intuitionistic logic. These can be displayed in sequent calculus style as follows:

Γ ` B
Γ, A ` B

weak
Γ, A,A ` B

Γ, A ` B
contr

As Girard mentioned in [43], the weakening rule “opens the door to fake dependencies”, because it
breaks the relevance relations between the assumptions and the conclusions, while the contraction
is the “fingernail of infinity”, because it allows the multiple use of an assumption. In a word,
these rules are bad bookkeepers, since they make us loose control on our expenses, and hence
waste our resources.

The intuitionistic presentation of Linear Logic is the outcome of two fundamental operations:

9

• we forbid the unrestricted applications of weakening and contraction;

• we recover in a controlled way the full expressiveness of intuitionistic logic by adding four
logical rules, p (promotion), d (dereliction), w (weakening) and c (contraction), that keep
track of the reuse of resources by means of a new modality “!” (of course or exponential
modality):

!Γ ` A
!Γ ` !A

p
Γ, A ` C
Γ, !A ` C

d
Γ ` C

Γ, !A ` C
w

Γ, !A, !A ` C
Γ, !A ` C

c

these are also called exponential rules.

Therefore, the modality ! allows to carefully handle resources introducing a neat distinction
between those assumptions which are linear, i.e. consumable exactly once, and those which are
reusable by means of the exponential rules.

The lack of unrestricted weakening and contraction has several consequences. First, Linear
Logic is able to decompose the usual intuitionistic implication A⇒ B into !A(B, where(is
the linear implication and the modality ! allows the multiple or vacuous use of the assumption
A to get the conclusion B.

Another fundamental consequence is the presence of two distinct versions of the conjunction
∧, i.e. ⊗ (multiplicative conjunction or tensor) and & (additive conjunction or with), two distinct
versions for the disjunction ∨, i.e ` (multiplicative disjunction or par) and ⊕ (additive disjunction
or plus), and four distinct units:

multiplicative additive
∧ ⊗ &
∨ ` ⊕

true 1 >
false ⊥ 0

Let us explain why this happens. In intuitionistic logic both ∧ and ∨ have a multiplicative
and an additive formulation. As an example, the multiplicative version of ∧ has a right rule ∧R
with two premises, each one with a different context, and a left rule ∧L with a single premise:

Γ ` A ∆ ` B
Γ,∆ ` A ∧B

∧R
Γ, A,B ` C

Γ, A ∧B ` C
∧L

while the additive version of ∧ has a right rule ∧R with two premises sharing the same context,
and two left rules ∧L1 and ∧L2 with a single premise:

Γ ` A Γ ` B
Γ ` A ∧B

∧R
Γ, A ` C

Γ, A ∧B ` C
∧L1

Γ, B ` C
Γ, A ∧B ` C

∧L2

In both classical and intuitionistic logic, due to the presence of weakening and contraction, the
multiplicative and the additive presentations of the connective ∧ are equivalent, and similarly
for ∨. For example, in intuitionistic logic the multiplicative formulation of ∧R can be derived
from the additive one, and vice versa:

Γ ` A
weak

Γ,∆ ` A
∆ ` B

weak
Γ,∆ ` B

∧R
Γ,∆ ` A ∧B

Γ ` A Γ ` B ∧R
Γ,Γ ` A ∧B

contr
Γ ` A ∧B

Since Linear Logic lacks the unrestricted structural rules, the above equivalence is no longer
provable. This means that the conjunction ∧ defined by the multiplicative rules is actually
different from the one introduced by the additive rules, and similarly for ∨.

10

A ` A
ax

Γ ` A ∆, A ` C
Γ,∆ ` C

cut

Γ, A ` B
Γ ` A(B

(R
Γ ` A ∆, B ` C
Γ,∆, A(B ` C

(L

Γ ` A ∆ ` B
Γ,∆ ` A⊗B

⊗R
Γ, A,B ` C

Γ,∆, A⊗B ` C
⊗L

` 1
1R

Γ ` C
Γ,1 ` C

1L

Γ ` A Γ ` B
Γ ` A&B

&R
Γ, A ` C

Γ, A&B ` C
&L1

Γ, B ` C
Γ, A&B ` C

&L2
Γ ` >

>R

!Γ ` A
!Γ ` !A

p
Γ, A ` C
Γ, !A ` C

d
Γ ` C

Γ, !A ` C
w

Γ, !A, !A ` C
Γ, !A ` C

c

Γ ` A〈γ/α〉 γ 6∈ FV (Γ)

Γ ` ∀α.A
∀R

Γ, A〈B/α〉 ` C
Γ,∀α.A ` C

∀L

Figure 2.1: The logical system ILL2.

2.2.2 Linear Logic and its fragments
We present Second-Order Intuitionistic Linear Logic (ILL2), omitting for the sake of simplicity
the connective “⊕”, its unit “0”, and the existential quantifier “∃”.

• Its formulas are generated by the following grammar:

A := α | A(A | A⊗A | 1 | A&A | > | !A | ∀α.A

where α is taken from a denumerable set of propositional variables and “∀” is called (second-
order) universal quantifier.

• The logical system ILL2 (Second-Order Intuitionistic Linear Logic) is in Figure 2.1. It
derives sequents Γ ` A, where Γ is a context (a multiset of formulas) and A is a formula.
We recall that, given a context Γ = A1, . . . , An, !Γ stands for !A1, . . . , !An, FV (Γ) denotes
the set of all free propositional variables in Γ, and A〈B/α〉 denotes the standard meta-level
substitution of B for every occurrence α in A.

• The subsystem ILL (Intuitionistic Linear Logic) is obtained from ILL2 by forgetting the
clause for ∀ in the grammar of formulas and the inference rules ∀R and ∀L in Figure 2.1.

• The notion of cut-free derivation and the cut-elimination steps for ILL2 are standard and
both cut-elimination and confluence hold for it [90].

It is often useful to study subsystems of ILL2 that are expressive enough to illustrate particular
features. We shall call a fragment of ILL2 a system obtained by ruling out some clauses from

11

the language of formulas and the corresponding inference rules from Figure 2.1. Fragments can
be divided into propositional, i.e. those ones which are free from ∀, and second-order, i.e. those
including ∀. We shall consider both kinds of fragment as free from ⊗ and units: these can be
added to propositional fragments, but in second-order fragments they are definable, so they can
be neglected (this is the reason why we have parenthesis in the table below).

Let us introduce the most interesting fragments of ILL2:

(⊗ & ! ∀
IMLL X (X)
IMALL X (X) X
IMELL X (X) X

IMLL2 X (X) X
IMALL2 X (X) X X
IMELL2 X (X) X X

The complete names of these fragments are given below:

• IMLL (resp. IMLL2) is Propositional (resp. Second-Order) Intuitionistic Multiplicative Lin-
ear Logic;

• IMALL (resp. IMALL2) is Propositional (resp. Second-Order) Intuitionistic Multiplicative
Additive Linear Logic;

• IMELL (resp. IMELL2) is Propositional (resp. Second-Order) Intuitionistic Multiplicative
Exponential Linear Logic.

2.2.3 Simpson’s Linear Lambda Calculus

The Linear Lambda Calculus Λ! is an untyped term calculus closely related to linear logic intro-
duced by Simpson in [85]. In this calculus the usual λ-abstraction is expressed by two distinct
operators: a linear abstraction λx.M and non-linear abstraction λ!x.M , which allows duplica-
tions of the argument. In particular, the argument of λ!x.M is required to be suspended as thunk
!N , which corresponds to the !-box of linear logic proof nets (see [42]).

The terms of the Linear Lambda Calculus are generated by the following grammar:

M := x | λx.M | λ!x.M | MM | !M

where x is taken from a denumerable set of variables and x is bound in both λx.M and λ!x.M .
We say that x is linear in M if x occurs free exactly once inM and, moreover, this free occurrence
of x does not lie within the scope of a !-operator in M . A term M is said linear if, for every
subterm of M of the form λx.N , it holds that x is linear in N .

A version of β-reduction can be defined for Λ!, and is called surface reduction. Surface
reduction forbids evaluation under the scope of a !-operator, which reflects the idea that thunks
are suspended computations. This requires the notion of surface context, i.e. a term in Λ!

containing a unique hole [·], generated by the following grammar:

C := [·] | λx.C | λ!x.C | CM | MC.

if C is a surface context and M is a term, then C[M] denotes the term obtained by substituting
the unique hole in C with M allowing the possible capture of free variables in M .

12

Surface reduction is defined by the binary relation →! on Λ! expressing a single step of
reduction and given by the following rules:

(λx.M)N →! M [N/x]

(λx!.M)(!N)→! M [N/x].

that can apply to any surface context. Its reflexive and transitive closure is →∗! . A term is in
(or is a) surface normal form if no surface reduction applies to it.

One can easily check that linearity is preserved under surface reduction, that is, if M →! M
′

and M linear, then M ′ is linear. Moreover, if M ∈ Λ! is linear:

• Confluence: M →∗! M1 and M →∗! M2 imply that there exists N such that M1 →∗! N and
M2 →∗! N ;

• Uniformity : whenever a k-step reduction sequence M →∗! S exists, where S is a surface
normal form, then all reductions from M reach S in exactly k steps. In particular, if M is
normalizing under surface reduction then it is strongly normalizing.

2.3 Implicit Computational Complexity

2.3.1 Turing Machines
Turing Machines represent a model of computation introduced by Alan Mathison Turing in [91].
They can be thought of as finite state machines operating on an infinitely long tape divided into
cells. Each cell contains exactly one symbol from a finite alphabet Γ endowed with two special
symbols, the “blank” � (the only symbol that can occur infinitely many times on the tape) and
the “start” . (that identifies the portion of the tape where computation takes place). The tape is
equipped with a head that can potentially read or write symbols in the tape, one cell at a time.
Based on the symbol the head is currently reading and the current state, the Turing Machine
(over)writes a new symbol in the same cell (possibly the same as the previous one), moves left
or right, and enters a new state (possibly the same as the previous one). The transition function
is the “program” that specifies each of these actions.

More formally, a (deterministic) Turing Machine, TM for short, is a tuple M , (Γ, Q, δ),
where:

• Γ is a finite set of symbols, called the alphabet of M, containing the symbols � (blank)
and . (start);

• Q is a finite set, called the set of states ofM, containing a special state q0 (initial state),
and a subset F of distinguished states (final states);

• δ is a function δ : Q× Γ −→ Q× Γ× {left, right}, called transition function ofM.

The tape contains initially a finite string .x0 . . . xn called input, with xi ∈ Γ \ {�, .}, and
blank symbols on the rest of its cells, with the head reading x0 and the machine in the initial
state q0. The triple (., x0 . . . xn, q0) describes this initial step, and is called initial configuration.

More in general, a configuration is a triple (.x0 . . . xn, y0 . . . ym, q), with xi, yj ∈ Γ \ {�, .}
and q ∈ Q, describing a step in the computation of the machine: the string .x0 . . . xn, y0 . . . ym
represents all non-blank symbols that are currently written on the tape (there are finitely many
such symbols), the head is reading the symbol y0, and the machine is in the state q.

At each step in the computation, the machine applies the transition function δ to the pair
(q, x) ∈ Q× Γ describing the current state and the symbol red by the head, and obtains a triple

13

(q′, y,m), with m ∈ {left, right}, that provides the new state q′ of the machine, the new symbol
y to be written, and the move m of the head.

If the machine is in a final state, it halts. In this case, the string .y0 . . . yn of non blank
symbols in the tape is called output, and the corresponding configuration is called final. W.l.o.g.
the set of final states of a TM can be divided into accepting and rejecting.

2.3.2 Computational Complexity
We here recall some basic definitions about computational complexity from Arora and Barak [5].

A complexity class is a set of languages, i.e. subsets of {0, 1}∗, that can be recognised by
a Turing Machine M within given resource bounds (in time or space). More formally, given a
language L and a function T : N −→ N, we say that M recognises L in T (n)-time (resp. in
T (n)-space) if, for every x ∈ {0, 1}∗, whenever M is initialized to the initial configuration on
input x:

• if x ∈ L thenM halts on an accepting state,

• if x 6∈ L thenM halts on a rejecting state,

• M requires at most T (|x|) steps of computation (resp. cells of the tape).

We briefly recall some of the most interesting (deterministic) complexity classes:

• PTIME is the set of all languages that can be recognised by a TM in p(n)-time, for some
polynomial p : N −→ N;

• PSPACE is the set of all languages that can be recognised by a TM in p(n)-space, for some
polynomial p : N −→ N;

• EXPTIME is the set of all languages that can be recognised by a TM in 2p(n)-time, for some
polynomial p : N −→ N;

• ELEMENTARY is the set of all languages that can be recognised by a TM in expk(n)-time,
for some k ∈ N, where exp0(n) = n and expk+1(n) = 2expk(n).

The class PTIME plays a central role in computational complexity. On the one hand, it is
invariant for all models of computation that are polynomially equivalent to the (deterministic
single-tape) TMs. On the other hand, it roughly corresponds to the class of problems that can
be “efficiently” decided, and hence realistically solvable on a computer.

Its functional version is FPTIME, defined as the set of all functions f : {0, 1}∗ −→ {0, 1}∗
that can be computed by a TM in p(n)-time, for some polynomial p : N −→ N.

2.3.3 Implicit Computational Complexity
Implicit Computational Complexity (ICC) is a subfield of computational complexity theory orig-
inated in the 1990s that aims at characterizing complexity classes without referring to machine
models (e.g. Turing Machines, Register Machines, . . .), explicit bounds on computational re-
sources (in time and space) or particular interpretations, but only by considering language re-
strictions or logical/computational principles entailing complexity properties.

ICC has borrowed techniques and results from several areas, like recursion theory, type theory
and proof theory, paying a special attention to the polynomial time functions/problems. The
development of ICC has been spurred by Cobham’s 1965 work [21], in which a subclass of the
primitive recursive functions has been proven to capture FPTIME. This subclass includes certain

14

initial functions and is closed under composition and a restricted version of the recursion scheme,
called bounded recursion on notation.

Cobham’s result has yielded fruitful applications, that helped in understanding the polyno-
mial time. However, it cannot be considered as an “implicit” approach to complexity, because it
makes use of external bounds. The first recursion-theoretic characterizations of FPTIME in the
style of ICC are due to Bellantoni and Cook [13] and Leivant [59]. In the former, the arguments
of a n+m-ary function fn+m : Nn+m → N are partitioned into “normal” and “safe” by means of
a semicolumn:

f(x1, . . . , xn; yn+1, . . . , yn+m)

the idea is that the recursive call of f can only appear in the “safe zone”. This approach is
called safe recursion. Leivant’s result is rather based on the so-called predicative (or ramified)
recurrence, in which each argument of a function comes with a “tier”, keeping track of the recursive
calls.

Though apparently different, the two proposals capture in essence the same intuition: it is
forbidden to iterate a function which is itself defined by recursion. More formally, in a recursive
definition f(s(x), y) = h(x, y, f(x, y)) the result f(x, y) of the recursive call of f cannot be itself
a recursive parameter of the step function h. This idea is part of a more general approach at
the very heart of ICC: stratification. Intuitively, stratification consists in organizing computation
into different levels (e.g. Leivant’s tiers) in order to cut off all those computations overstepping
the given resource bounds.

The ramified recurrence has been generalized to higher-order languages, where functions can
take other functions as argument. In this setting, the polynomial time is captured by imposing
linearity constraints on higher order variables, like in Hofmann [49] with the system SLR (Safe
Linear Recursion), or in Bellantoni et al. [14] with the calculus RA. In SLR, a modality �
provides the type-theoretical counterpart of Bellantoni and Cook’s first-order notion of “normal”
parameter: the type (�N)n → Nm → N corresponds exactly to a number-theoretic function
with n normal variables and m safe variables.

The system SLR has inspired several ICC-like approaches to non-deterministic and proba-
bilistic polytime complexity. First, Mitchell et al. [72] introduced OSLR, a variant of SLR that
characterizes oracle polynomial time functionals. Secondly, Zhang [95] introduced another ver-
sion of the system, called CSLR, that defines exactly those functions that can be computed by
a Probabilistic Turing Machine in polynomial time. In SLR and all these variants, the charac-
terization theorem exploits semantic methods, due to problems with the Subject reduction. To
circumvent this technical drawback, Dal Lago and Toldin devised in [28] a further variation of
Hofmann’s system, called RSLR. This system has been proven both sound and complete for the
probabilistic polynomial time by purely syntactic means.

A proof-theoretical approach to ICC relies on the so-called light logics, subsystems of Linear
Logic obtained by considering weaker versions of the exponential rules able to limit the use of
duplication and to induce a bound on normalization. In a light logic stratification is given by
the notion of “depth”, that allows a level-by-level cut-elimination.

A first example of light logic is Light Linear Logic (LLL), introduced by Girard in 1998 [44].
This logic and its variant Light Affine Logic (LAL) [6, 7] have been proven to capture FPTIME.
Another characterization of the polynomial time has been proposed by Lafont with Soft Linear
Logic (SLL) [56]. In this logic, contraction, weakening and dereliction are replaced by the so-
called “multiplexor rule”, that can be used to keep track of the number of duplications performed
during cut-elimination in a very simple way. Last, Danos and Joinet designed Elementary Linear
Logic (ELL) in [30], a light logic characterizing the class ELEMENTARY, containing all those
languages that can be computed in time bounded by a tower of exponentials of fixed length.

15

Light logics were also studied as type assignments for the standard λ-calculus, like Baillot
and Terui [88] for LAL or Gaboardi and Ronchi [38, 40] for SLL. According to the well-known
Curry-Howard isomorphisms paradigm, this essentially amounts to decorate logical derivations
with λ-terms. In these works it has been stressed that the modal aspect of light logics prevents
a close correspondence between proof normalization and β-reduction: on the one hand, as also
remarked in a more general setting by Lincoln [62], the subject reduction property fails, so that
typed terms might become untypable during evaluation; on the other hand, the proof-theoretic
complexity bounds on the cut-elimination are not always inherited by terms. In order to recover
the missing matching, variants of these systems have been considered, like DLAL (Dual Light
Affine Logic) in [88] and STA (Soft Type Assignment) in [38, 40].

2.4 Bisimulation and coinduction

Bisimulation is a fundamental notion in computer science (see e.g. [81]). It has been employed
in several areas, like formal verification or program analysis, introducing new proof techniques
based on coinduction. Moreover, the bisimulation equality, called bisimilarity, is the most studied
form of behavioural equivalence in concurrency theory, being accepted as the finest equivalence
we are willing to impose on processes.

Bisimulation is in general presented as a relation on state transition systems. A Labelled
Transition System, LTS for short, is a triple (W,Act, { a−→}a∈Act), where W is a set of states,
Act is a set of labels and the a−→ are binary relations on W called transition relations. A
bisimulation is a relation R on W such that, whenever s1 R s2:

(1) for all s′1 with s1
a−→ s′1, there is s′2 such that s2

a−→ s′2 and s′1 R s′2:

s1 s′1

R R
s2 ∃s′2

a

a

(2) for all s′2 with s2
a−→ s′2, there is s′1 such that s1

a−→ s′1 and s′1 R s′2:

s1 ∃s′1
R R
s2 s′2

a

a

if R satisfies only point (1), then it is called a simulation. Bisimilarity, written ∼, is the union
of all bisimulations, thus s ∼ t holds if there exists a bisimulation s R t. Similarity, written -,
is the union of all simulations.

Let us remark that bisimilarity has a strong impredicative flavour:

• bisimilarity is in turn a bisimulation, hence it is contained in the union of all relations
defining it;

• in order to show that s1 and s2 are bisimilar it suffices to find a bisimulation that contains
the pair (s1, s2) (a technique known as bisimulation proof method).

16

The impredicative aspect of bisimilarity is a consequence of its coinductive nature. Intuitively,
a set A is defined coinductively if it is the greatest solution of an inequation of a certain form,
and the related coinduction proof principle just says that any set that is a solution of the same
inequation is contained in A. Dually, a set A is defined inductively if it is the least solution of
an inequation of a certain form, and the related induction proof principle says that any other set
that is solution of the same inequation contains A.

Showing that bisimilarity and the related bisimulation proof method are based on coinduction
relies on a simple application of the Knaster-Tarski Theorem concerning complete lattices. Before
stating it, we recall that a complete lattice is a partially ordered set with all joins (i.e. all subsets
have a least upper bound) and meets (i.e. all subets have an greatest lower bound). If we denote
≤ the partial order on a lattice L, a point x in the lattice is a post-fixed point of an endofunction
F on L if x ≤ F (x); it is a pre-fixed point if F (x) ≤ x; finally, it is a fixed-point if it is both a
post-fixed and a pre-fixed point, i.e. if F (x) = x.

Theorem 1 (Knaster-Tarski). On a complete lattice, a monotone endofunction has a complete
lattice of fixed points. In particular, the greatest fixed point of the function is the join of all its
post-fixed points, and the least fixed point is the meet of all its pre-fixed points.

The existence of the gratest fixed point for monotone functions justifies coinductive definitions
and allows the coinduction proof principle expressed by the following rule:

F monotone x ≤ F (x)

x ≤ gfp(F)

where gfp(F) indicates the greatest fixed-point of F .
Now, given a LTS (W,Act, { a−→}a∈Act) we can consider the complete lattice of all relations

on W partially ordered by the inclusion, where the join is the relational union and the meet is
the relational intersection. Moreover, on this lattice we consider the endofunction F∼ such that,
for all relations R on W , F∼(R) is the greatest bisimulation contained in R.

The function F∼ satisfies the following properties:

(1) F∼ is monotone;

(2) R is a bisimulation if and only if R ⊆ F∼(R).

Point (1) and Theorem 1 imply the existence of a greatest fixed-point R∗ for F∼, which is the
union of all its post-fixed point, i.e. the union of all relations R such that R ⊆ F∼(R). By
point (2), we conclude R∗ =∼.

2.5 Notational conventions and basic definitions

2.5.1 Standard notation

We write N for the set of natural numbers, R for the set of real numbers and [0, 1] for the unit
interval of R. Given a finite set X, a string (over X) is a finite ordered tuple of elements in
X. We denote Xn the set of strings over X of length n (X0 being the singleton consisting of
the empty tuple), and X∗ is defined by

⋃
n∈NX

n. The length of a string x is denoted |x|. We
will typically consider strings over the binary alphabet {0, 1}, also called strings of booleans.
Elements of {0, 1} are ranged over by b.

17

2.5.2 Relations and distributions
Relations and inductive presentation. We assume the reader is familiar with standard
set-theoretic notions (see [55]). We recall that, if X1, . . . , Xn are sets, a relation on X1, . . . , Xn

is a subset of X1 × . . .×Xn. A relation over X is a relation on X,X. Relations are ranged over
by R. Special relations will be denoted by special symbols like, for example, “⇒” (Chapter 4)
and “⇓” (Chapter 5). For binary relations, we shall use the standard infix notation x R y for
(x, y) ∈ R. Given a relation on X,Y and Z ⊆ X, R(Z) denotes the image of Z under R,
i.e. the set {y ∈ Y | ∃x ∈ Z, (x, y) ∈ R}, and Rop represents the converse of R, i.e. {(y, x) ∈
Y ×X | (x, y) ∈ R}. Moreover, given a relation over X, R+ (resp. R∗) denotes the transitive
(resp. reflexive and transitive) closure of R. Finally, if R is an equivalence relation, X/R denotes
the set of all equivalence classes of X modulo R.

Binary relations can be introduced by means of an inductive, rule-based definition (see [3]).
In this case, we display a set of rule schemes {R1, . . . , Rn} defining a relation R, where each Ri
has the following form:

x1 R y1 . . . xn R yn
Rix R y

with possible side conditions that narrow the premises of Ri. Given a system of rule schemes
{R1, . . . , Rn} defining a binary relation R, a derivation of x R y is a downward oriented tree
whose nodes are rules (the leaves being the axioms, i.e. rules with an empty set of premises),
whose edges R → R′ are such that the conclusion of the rule R is a premise of the rule R′, and
whose root is a rule with conclusion x R y. Derivations are ranged over by Greek letters like
π, ρ, σ. With π : x R y we denote a derivation π of x R y.

Probabilistic transition relations. For relations R ⊆ X × [0, 1] ×X we shall use the infix
notation x Rr y in place of (x, r, y) ∈ R. A probabilistic transition relation (over a set X) is a
relation R ⊆ X × [0, 1]×X such that, for all x ∈ X:∑

r, y s.t.
x Rr y

r ≤ 1

Given R a probabilistic transition relation over X, we construct by induction on n ∈ N the
probabilistic transition relation Rn:

x R0
r y ⇔ x = y ∧ r = 1

x Rn+1
r y ⇔ ∃y′ ∃r′ ∃r′′ (x Rnr′ y′ ∧ y′ Rr′′ y ∧ r = r′ · r′′).

Subprobability distributions. Let X be a set. A subprobability distribution (over X) is a
function f : X → [0, 1] such that

∑
x∈X f(x) ≤ 1. If

∑
x∈X f(x) = 1, then f is also called a

probability distribution (over X).
The set of all subprobability distributions over X is denoted by D(X). Subprobability dis-

tributions, or distributions for short, are ranged over by D ,E ,F , Given a distribution
D ∈ D(X), its support supp(D) is the subset of all elements x ∈ X such that D(x) > 0.
Given x1, . . . , xn ∈ X, the expression r1 · x1 + . . . + rn · xn is used to denote the distribution
D ∈ D(X) with finite support {x1, . . . , xn} such that D(xi) = ri, for every i ≤ n. Given
Y ⊆ X and D ∈ D(X), we write D(Y) in place of

∑
x∈Y D(x). In particular, D(X) will be

also written
∑

D , and called the mass of D . The symbol ⊥ denotes the empty distribution
and x can denote both an element in X and the distribution having all its mass on x. Given a

18

(possibly infinite) index set I, a family {ri}i∈I of positive real numbers such that
∑
i∈I ri ≤ 1,

and a family {Di}i∈I of distributions, the distribution
∑
i∈I ri · Di is defined, for all x ∈ X, by

(
∑
i∈I ri ·Di)(x) =

∑
i∈I ri ·Di(x).

Subprobability distributions over a set X can be compared by pointwise lifting the canonical
order on R up to D(X). For all D ,E ∈ D(X):

D ≤D E if and only if ∀x ∈ X, D(x) ≤ E (x). (2.1)

We recall that, given a partial order set (X,v), a subset ∅ 6= D ⊆ X is directed if ∀x, y ∈ D
∃z ∈ D such that x v z and y v z. A directed-complete partial order (or dcpo) is a partial order
in which every directed set D has a supremum

⊔
D.

For any set X, it holds that:
(D(X),≤D) is a dcpo (2.2)

where the least element is the empty distribution ⊥ and the supremum of a directed subset
∅ 6= D ⊆ D(X) is pointwise defined, for all x ∈ X, by (supD∈D D)(x) , supD∈D D(x).

2.5.3 Typed and untyped calculi

The standard λ-calculus. We assume the reader is familiar with some basic concepts related
to the standard λ-calculus (see [10]) like: (i) the set FV (M) of the free variables of the λ-term
M , where M is closed if FV (M) = ∅, (ii) the meta-level substitution M [N/x] that replaces the
λ-term N for every free occurrence of the variable x in M , (iii) the size |M | of a λ-term M ,
i.e. the number of nodes in its syntax tree, (iv) the contexts C, i.e. λ-terms with a place-holder
(the hole) [·] that may capture free variables of a λ-term plugged into [·], (v) the α-equivalence
(=α), (vi) the β-reduction (λx.M)N →β M [N/x], (vii) the η-reduction λx.Mx→η M that can
be applied if x 6∈ FV (M).

Terms will be taken up to α-equivalence, and both→β and→η will be considered contextually
closed. By →∗β we denote the reflexive and transitive closure of the β-reduction, and by =β its
reflexive, symmetric and transitive closure. Also, by →∗η we denote the reflexive and transitive
closure of the η-reduction, and by =η its reflexive, symmetric and transitive closure. Finally, by
→βη we denote →β ∪ →η, and by →∗βη we denote its reflexive and transitive closure.

We recall that a λ-term is in β-normal form, or simply (β-)normal, whenever no β-reduction
applies to it. As a consequence, all β-normal forms have shape λx1 . . . xn.yM1 . . .Mm, where
each Mi is in turn a β-normal form, for n,m ≥ 0. A λ-term is in η-normal form, or simply
η-normal, if no η-reduction applies to it. Finally, a λ-term is in βη-normal form, or simply
βη-normal, whenever no βη-reduction applies to it.

Type systems. In Section 2.1 and Section 2.2 we introduced some basic notions of proof-theory
(see [90]), Linear Logic (see [46]), type systems (see [11]) and the Curry-Howard isomorphisms
(see [87]). We shall mainly consider type systems that correspond, under the Curry-Howard
paradigm, to second-order fragments of ILL2 or to their proper extensions.

We recall that type systems derive judgments Γ ` M : A, where A is a type (the predicate),
M is a term (the subject), and Γ is a context, i.e. a finite multiset of the form x1 : A1, . . . , xn : An,
where each xi is a λ-variable, each Ai is a type, and each xi : Ai is called declaration. Typically,
names for contexts are Γ,∆ or Σ. Given a context Γ, its domain dom(Γ) is {x1, . . . , xn} and its
range rng(Γ) is {A1, . . . , An}.

The set of free type variables of A will be denoted by FV (A). If FV (A) = ∅, then A is said
closed. If FV (A) = {α1, . . . , αn}, then a closure A of A is ∀α1. · · · .∀αn.A, not necessarily linked
to a specific order of α1, . . . , αn. The standard meta-level substitution of a type B for every free

19

occurrence of α in A is A〈B/α〉. The size |A| of the type A is the number of nodes in its syntax
tree. Given Γ = x1 : A1, . . . , xn : An, we shall write FV (Γ) in place of

⋃
A∈ rng(Γ) FV (A), and

|Γ| in place of
∑n
i=1 |Ai|.

Derivations in a type system are ranged over by D. The size |D| of D is the number of rule
instances D contains. We say that Γ `M : B is derivable if a derivation D exists that concludes
with the judgment Γ `M : B, and we also say that D is a derivation of Γ `M : B. In that case
we write D /Γ `M : B saying that M is an inhabitant of B or that B is inhabited by M from Γ.

20

Chapter 3

A Type Assignment of Linear
Erasure and Duplication

Through the well-known Curry-Howard isomorphisms, that connect logical proofs and functional
languages, Intuitionistic Linear Logic (ILL) allows to look at computation as the result of an
interaction between non-linear components, where arguments can be duplicated and erased at
will, and strictly linear components, where each argument is consumed exactly once. In the
standard λ-calculus, seen as a paradigm of functional programming, the latter components of
computation are represented by the linear λ-terms.

According to the above computational reading, the core fragment of ILL forbidding weakening
and contraction (i.e. IMLL) and its second-order formulation (i.e. IMLL2) are both seen as type
systems for the linear λ-terms: formulas are types, proofs are terms, and cut-elimination is term
reduction. It becomes then possible to explore the computational expressiveness of these logics
which, despite a very weak language, has been proven quite rich.

A first result in this direction has been given by Alves et al. [4]. They have shown that
extending the language of IMLL with booleans, natural numbers, and a linear iterator is enough
to obtain the full computational power of Gödel’s system T . In other words, the presence of
explicit rules for weakening and contraction is redundant in system T , since non-linearity can be
recovered from numerals and linear iteration.

The work of Alves et al. is based on an extension of IMLL. In [68] Matsuoka investigates the
discriminating power of IMLL without new constructs. His main result is a typed variant of the
weak Böhm Theorem: given a pair of distinct closed βη-normal forms N1 and N2 having type A
in IMLL, a term M exists such that MN1 is βη-equivalent to tt and MN2 is βη-equivalent ff,
where tt and ff are suitable encodings of booleans. This result has been later refined by the
same author in [69], who proves a typed version of the strong Böhm Theorem, generalizing tt

and ff to arbitrary closed terms of a given type in IMLL.
A remarkable consequence of [68, 69] is that discriminating among linear λ-terms in a typed

setting relies on some implicit erasure mechanisms that can be expressed in IMLL, though this
system lacks the inference rules for weakening and contraction. How is this possible? There
are essentially two kinds of erasure mechansms in the linear λ-calculus. A first approach has
been suggested by Klop [54], and consists on regarding some components of a term as “garbage”.
Linear erasure becomes then a form of garbage collection, in which all the undesired “data”
produced during evaluation are moved to these components. A second approach is based on
data consumption. According to this idea, erasing a term amounts to “fully evaluate” it by
a sequence of applications until an identity I = λx.x is reached. Both erasure mechanisms

21

have been recently used by Mackie [63] to show some encodings of natural numbers and basic
number-theoretic functions in the linear λ-calculus.

Special forms of linear duplication exist as well. In [64] Mairson has shown that a “duplicator”
of booleans can be typed in IMLL, proving that the system is powerful enough to encode boolean
circuits. Here duplication exploits linear erasure (by data consumption), and is constructed with
built-in pairs of booleans 〈tt, tt〉 and 〈ff, ff〉 representing both possible outcomes of duplication:
according to the boolean received in input, the duplicator selects the right pair and erases the
remaining one.

The encoding of boolean circuits has been reformulated in IMLL2 by Mairson and Terui [65],
where the presence of second-order quantifiers plays a central role, because it allows to assign
uniform types to structurally related linear λ-terms. Moreover, these authors generalized the
mechanisms of linear erasure and duplication, known for booleans, to the so-called class of
closed Π1 types, representing finite data types. Showing the existence of a uniform duplication
mechanism for all closed and normals inhabitants of a closed Π1 type is not simple, and its proof
was only sketched in [65]. It basically consists in constructing in IMLL2 a “compiler”, that maps
each such inhabitant M into a linear λ-term dMe representing its encoding, and a “decoder”,
that maps dMe back to the desired pair 〈M,M〉.

Starting from [65], this chapter investigates the basic proof-theoretical and computational
properties of Linearly Exponential Multiplicative Type Assignment (LEM), a new system able to
internalize the linear weakening and contraction of closed Π1 types (here called “ground types”)
discussed by Mairson and Terui. LEM extends IMLL2 with inference rules for the modality “´”
that recall the exponential rules of ILL, though much weaker.

To faithfully represent the mechanisms of linear erasure and duplication of IMLL2, we intro-
duce constrained forms of cut-elimination rules for LEM, we call “lazy”. Lazy cut-elimination
rules are far too weak for assuring a cut-elimination result. So, we identify a relevant class of
types, called “lazy types”, whose derivations can always be rewritten in cubic time to cut-free
ones according to a specific lazy cut-elimination strategy. We also prove the Subject reduction
property for LEM.

Then, we study a translation of LEM into IMLL2, that shows how the restricted weakening
and contraction rules of LEM can be represented by linear weakening and contractions of closed
Π1 types in IMLL2. A striking feature of the translation is that contraction in LEM exponentially
compresses the linear contraction of IMLL2.

The translation reveals that the algorithmic expressiveness of LEM is the same as IMLL2.
Nevertheless, the exponential compression of the linear contraction in IMLL2 produces several
benefits in LEM. On the one hand, the encoding of boolean circuits for IMLL2 can be converted
into a more compact and modular one for LEM. On the other hand, we show a nice encoding of
natural numbers quite similar to the Church encoding in Linear Logic, and we show that both
the successor and the addition are definable.

Outline of the chapter. In this chapter we present the type system LEM, and we investigate
its basic properties. In Section 3.1, we introduce the linear λ-calculus and its type assignment
system IMLL2 (Section 3.1.1) in order to explore the mechanisms of linear duplication and erasure
both in the untyped and in the typed setting (Sections 3.1.2 and 3.1.3). In Section 3.2 we
give a complete and detailed proof of the duplication theorem sketched in [65]. In Section 3.3
we present the type system LEM and we explore the proof-theoretical and the computational
properties. First, we prove a mildly weakened form of cut-elimination, we call lazy (Section 3.3.2),
and the Subject reduction property (Section 3.3.3). Then, we show a translation of LEM into
IMLL2, proving that derivations in the former system can exponentially compress the ones in
the latter (Section 3.3.4). Finally, in Section 3.4 we explore the benefit of the exponential

22

compression on the algorithmic expressiveness of LEM, by considering an encoding of boolean
circuits (Section 3.4.1) and an encoding of the natural numbers that allows to represent the
successor and the addition (Section 3.4.2).

3.1 Duplication and erasure in the linear λ-calculus
In this section we discuss the erasure and duplication in the linear λ-calculus Λl. Concerning
the untyped case, we study the existence of the so-called “erasers” and “duplicators”, i.e. linear
λ-terms that uniformly erase or duplicate all elements of a subset of Λl. On the one hand,
we prove that an eraser for a finite set X ⊆ Λl exists if and only if all terms in X are closed
(Proposition 5). On the other hand, we show that if a set X ⊆ Λl has a duplicator, then X
must be finite and contains only closed terms (Proposition 6). What about the converse? Is it
the case that a duplicator exists for all finite subsets containing closed linear λ-terms? We argue
that this property essentially relies on a conjecture about Böhm Separation (Conjecture 7).

In a typed setting, we focus on sets of closed and normal inhabitants having type in IMLL2

(Second-Order Intuitionistic Multiplicative Linear Logic). Theorem 9 and Theorem 10 ensure
the existence of duplicators and erasers for “ground types”, i.e. Mairson and Terui’s closed Π1

types [65]. Constructing a “duplicator” for a ground type is not simple and requires several
technical preliminary results. For this reason the detailed proof of Theorem 10 will be postponed
to the next section.

3.1.1 The linear λ-calculus and IMLL2

The linear λ-calculus is the λ-calculus restricted to linear λ-terms.

Definition 1 (Linear λ-terms). A linear λ-term is a λ-term M such that:

• each free variable of M has just one occurrence free in it;

• for each subterm λx.N of M , x occurs in N exactly once.

The set of all linear λ-terms is denoted Λl, while its restriction to closed λ-terms is Λ∅l .

Example 5. Examples of linear λ-terms are the identity I , λx.x and the exchange operator
C , λx.λy.λz.xzy, while the constant operator K , λx.λy.x and the (strong) composition
operator S , λx.λy.λz.xz(yz) are not linear λ-terms. Last, if M and N are linear λ-terms, then
〈M,N〉 , λz.zMN is a linear λ-term.

Linear λ-terms enjoy the following straightforward properties:

Proposition 2. For all M ∈ Λl, if M →βη N then:

(1) FV (N) = FV (M),

(2) N ∈ Λl.

(3) |M | = |N |+ 3.

Proof. Point (1) and point (2) are straightforward. Concerning point (3), each β-reduction
(λx.M)N →β M [N/x] is such that |(λx.M)N | = |M |+ |N |+ 2 and |M [N/x]| = |M |+ |N | − 1,
the latter because the unique occurrence of x in M has size 1 and is replaced by N . Moreover,
in each η-reduction λx.Mx→η M , we remove an abstraction, an application and a variable.

23

We present IMLL (Propositional Intuitionistic Multiplicative Linear Logic) and IMLL2 (Second-
Order Intuitionistic Multiplicative Linear Logic) as type assignment systems for the linear λ-
calculus:

Definition 2 (The systems IMLL2 and IMLL).

• Let X be a denumerable set of variables. The set of types of IMLL2 are generated by the
following grammar:

A := α | A(A | ∀α.A (3.1)

where α ∈ X .

• IMLL2 is the type assignment system for the linear λ-calculus displayed in Figure 3.1(a) (in
sequent calculus style) and in Figure 3.1(b) (in natural deduction style), where the rules
(L and (E enjoy the following linearity constraint : dom(Γ) ∩ dom(∆) = ∅.

The system IMLL is obtained from IMLL2 by forgetting the clause ∀α.A in (3.1) and the inference
rules for ∀ in Figure 3.1.

x : A ` x : A
ax

Γ ` N : A ∆, x : A `M : C

Γ,∆ `M [N/x] : C
cut

Γ, x : A `M : B

Γ ` λx.M : A(B
(R

Γ ` N : A ∆, x : B `M : C

Γ,∆, y : A(B `M [yN/x] : C
(L

Γ `M : A〈γ/α〉 γ 6∈ FV (Γ)

Γ `M : ∀α.A
∀R

Γ, x : A〈B/α〉 `M : C

Γ, x : ∀α.A `M : C
∀L

(a) IMLL2 in sequent calculus style.

x : A ` x : A
ax

Γ, x : A `M : B

Γ ` λx.M : A(B
(I

Γ `M : A(B ∆ ` N : A

Γ,∆ `MN : B
(E

Γ `M : A〈γ/α〉 γ 6∈ FV (Γ)

Γ `M : ∀α.A
∀I

Γ `M : ∀α.A
Γ `M : A〈B/α〉

∀E

(b) IMLL2 in natural deduction style.

Figure 3.1: IMLL2 as a type assignment system.

The following is a well-known result from Hindley [48]:

24

Theorem 3 ([48]). Every linear λ-term is typable in IMLL.

As a consequence, IMLL2 gives a type to every linear λ-term. The converse holds as well, due
to the above linearity constraint in Definition 2, so the class of linear λ-terms is exactly the one
of all typable λ-terms in IMLL and IMLL2. It follows that second-order does not allow to type
more terms but it is nevertheless useful to assign uniform types to structurally related λ-terms.

Tensor and unit are definable in IMLL2 according to the following definition:

Definition 3 (Unit and tensor). The unit and the tensor are definable in IMLL2 as follows:

1 , ∀α.(α(α) A⊗B , ∀α.(A(B(α)(α

I , λx.x 〈M,N〉 , λz.z M N

let M be I in N ,MN let M be x, y in N ,M(λx.λy.N).

Both binary tensor products and pairs extend to their obvious n-ary versions An = A⊗ n. . .⊗A
and Mn , 〈M, n. . .,M〉.

Henceforth, any occurrence of unit, (n-ary) tensor and n-tuple will be taken from Definition 3.
So, the reduction rules and the inference rules in Figure 3.2 will be considered as derivable in
IMLL2.

We conclude by stressing a fundamental difference between IMLL and IMLL2. The latter
allows types with infinite (closed and) normal inhabitants, as the following example shows:

Example 6. Consider the type 1 = ∀α.(α(α). For all n ≥ 1 we can construct the following
derivation of 1(1:

ax
` I : 1

ax
` I : 1

ax
v : 1 ` v : 1

(L
z : 1(1 ` zI : 1 ∀L
z : 1 ` zI : 1

...
y : 1 ` yIn−1. . . I : 1

(L
x : 1(1 ` xI n. . .I : 1 ∀L
x : 1 ` xI n. . .I : 1

(R` λx.xI n. . .I : 1

All elements in {λx.x} ∪ {λx.xI n. . .I | n ≥ 1} are (closed and) normal inhabitants of 1(1.

3.1.2 The untyped setting
The linear λ-calculus forbids any form of direct duplication of λ-terms, by means of multiple
occurrences of the same variable, or of erasure, by omitting occurrences of bound variables in a
λ-term. Nevertheless, erasure and duplication can be simulated. Concerning the former, a first
approach has been developed by Klop [54], and can be called “erasure by garbage collection”. It
consists on accumulating unwanted data during computation in place of erasing it. For example,
K′ = λxy.〈x, y〉 represents the classical K = λxy.x, the second component of 〈x, y〉 being garbage.
Another approach is by Mackie, and can be called “erasure by data consumption” [63]. It involves
a step-wise erasure process that proceeds by β-reduction until the identity I is eventually reached,
according to the following definition:

Definition 4 (Erasability). A linear λ-term M is erasable if C[M] →∗β I, for some context C
such that C[M] is linear.

25

let I be I in N →β N

let 〈M1,M2〉 be x1, x2 in N →β N [M1/x1,M2/x2]

(a) Reduction rules for tensors and units.

` I : 1
1R

Γ `M : A

Γ, x : 1 ` let x be I in M : A
1L

Γ `M : A ∆ ` N : B

Γ,∆ ` 〈M,N〉 : A⊗B
⊗R

Γ, y : A, z : B `M : C

Γ, x : A⊗B ` let x be y, z in M : C
⊗L

(b) Inference rules 1R, 1L, ⊗R and ⊗L for IMLL2 in sequent style

` I : 1
1I

Γ ` N : 1 ∆ `M : A

Γ,∆ ` let N be I in M : A
1E

Γ `M : A ∆ ` N : B

Γ,∆ ` 〈M,N〉 : A⊗B
⊗I

Γ ` N : A⊗B Γ, y : A, z : B `M : C

Γ,∆ ` let N be y, z in M : C
⊗E

(c) Inference rules 1I, 1E, ⊗I and ⊗E for IMLL2 in natural deduction style

Figure 3.2: Rules for tensors and units derivable in IMLL2.

Example 7. The context C = (λz.[·])III erases λxy.zxy because, filling [·] by λxy.zxy, we obtain
a closed linear λ-term that reduces to I.

In [64], Mackie proves that all closed linear λ-terms can be erased by means of very simple
contexts.

Lemma 4 ([64]). Let M ∈ Λ∅l . Then there exists n ≥ 0 such that MI n. . .I→∗β I.

Proof. Since M is terminating, we assume without loss of generality that M is a normal form,
and hence with shape λx1 . . . xn.xiM1 . . .Mm, with n 6= 0 because M is closed. We proceed by
induction on the size of M . If n = 1 and m = 0 then M = λx.x and there is nothing to prove.
Otherwise, either n > 1 or both n = 1 and m > 0. Then we can construct the term MI n. . .I, and
we reduce it to obtain the term IM ′1 . . .M

′
m, where M ′i ,Mi[I/x1, . . . , I/xn]. It is easy to check

that |IM ′1 . . .M ′m| = |M |. So, by reducing the head redex we get a term with strictly smaller
size than M . We normalize it and we apply the induction hypothesis.

Remark 1. We recall from [10] that a closed λ-term M is said solvable if, for some n, there exist
λ-terms N1, . . . , Nn such that MN1 . . . Nn =β I. What Lemma 4 says is that every closed linear
λ-term is solvable by means of a linear context.

26

The notion of erasability can be addressed in a more general setting.

Definition 5 (Erasable sets). Let X ⊆ Λl. We say that X is an erasable set if a linear λ-term
EX exists such that EXM →∗β I, for all M ∈ X. We call EX eraser of X.

The following proposition states that a finite set X of linear λ-terms is erasable if and only
if all its elements are closed terms.

Proposition 5. Let X ⊆ Λl:

(1) if EX is an eraser of X then FV (EX) = ∅ and X ⊆ Λ∅l .

(2) if X is a finite subset of Λ∅l then it is erasable.

Proof. Concerning point (1), let X be a set of linear λ-terms and let EX be an eraser of X.
By definition, EXM →∗β I, for all M ∈ X. Since I is closed, by Proposition 2.(1) both EX
and all elements in X must be closed terms. To prove point (2), we show that any set X =
{M1, . . . ,Mn} ⊆ Λ∅l is erasable. By Lemma 4, for every i ≤ n there exists a ki ≥ 0 such that
MiI ki. . .I→∗β I. It suffices to set EX , λx.xI k. . .I, where k = maxni=1 ki.

There exist infinite sets of closed linear λ-terms that are erasable.

Example 8. The setX = {λz.zI n. . .I | n ∈ N} is erasable. Indeed, it suffices to define EX , λy.yI.
For all n ∈ N, we have:

EX (λz.zI n. . .I) = (λy.yI)(λz.zI n. . .I)→β (λz.zI n. . .I)I→β In+1. . . I→∗β I.

However, there also exist infinite sets of closed linear λ-terms that are not erasable, so that
the finiteness condition in Proposition 5.(2) is required.

Example 9. Let us denote with Lλn the linear λ-term of the form λxn . . . x1x.xL, for all n ∈ N
and for all L ∈ Λl. We show that, for all Lλn ∈ Λl and for all contexts C such that C[Lλn] ∈ Λl
and C[Lλn] →∗β I, it holds that |C[Lλn]| ≥ |Lλn| + n. The proof is by induction on n ∈ N. The
case n = 0 is straightforward, so let n > 0 and let C be such that C[Lλn] ∈ Λl and C[Lλn]→∗β I.
Then, for some C′ = C′′[[·]L′] it must be that:

C[Lλn]→∗β C′[Lλn] = C′′[LλnL′]→β C′′[λxn−1 . . . x1x.x(L[L′/xn])]→∗ I

and, by definition, λxn−1 . . . x1x.x(L[L′/xn]) = (L[L′/xn])λn−1. By applying the induction
hypothesis, |C′′[(L[L′/xn])λn−1]| ≥ |(L[L′/xn])λn−1|+(n−1). Hence, by using Proposition 2.(3):

|Lλn|+ n ≤ |LλnL′|+ (n− 1) = |(L[L′/xn])λn−1|+ (n− 1) + 3 ≤ |C′′[(L[L′/xn])λn−1]|+ 3

= |C′′[LλnL′]| = |C′[Lλn]| ≤ |C[Lλn]|.

Now, suppose that X = {Lλn ∈ Λ∅l | n ∈ N, L ∈ Λl} is erasable, and let EX be an eraser of X.
We define C , (λx.EXx)[·] so that, for all Lλn ∈ X, C[Lλn]→β EXL

λn →∗β I. This would imply
that, for all n ∈ N, |EXLλn|+ 3 = |(λx.EXx)Lλn| = |C[Lλn]| ≥ |Lλn|+ n, which is impossible.

In the same spirit of Definition 5, we now investigate duplicability in the linear λ-calculus.

Definition 6 (Duplicable sets). Let X ⊆ Λl. We say that X is a duplicable set if a linear λ-term
DX exists such that DXM →∗β 〈M,M〉 and FV (DX) ∩ FV (M) = ∅, for all M ∈ X. We call DX
duplicator of X.

27

Proposition 6. Let X ⊆ Λl. If DX is a duplicator of X then FV (DX) = ∅ and X is a finite
subset of Λ∅⊕.

Proof. Let X be a set of linear λ-terms, and let DX be a duplicator of X. By definition, DXM →∗β
〈M,M〉, for all M ∈ X. Since both M and DX are linear λ-terms and FV (DX) ∩ FV (M) = ∅,
we have that DXM is linear, for all M ∈ X. By Proposition 2.(1), if FV (DX) 6= ∅, then every
free variable in DX would occur in 〈M,M〉, contradicting FV (DX) ∩ FV (M) = ∅. Moreover, if
there were a variable occurring free in a term M ∈ X, then it would occur twice in 〈M,M〉,
contradicting Proposition 2.(2). This proves that X ⊆ Λ∅l . Now, suppose that a duplicator DX
for an infinite set X of closed linear λ-terms exists. Since we consider terms modulo α-conversion,
the set {M ∈ X | |M | ≤ n} is finite for all n ∈ N, so that we can always find a M ∈ X such
that |DX | < |M |. Then, we would have DXM →∗β 〈M,M〉 with |〈M,M〉| > |DX |+ |M |. This is
impossible by Proposition 2.(3).

The above proposition states that only closed and finite sets can be duplicated. We conjecture
that the converse holds as well, as long as we restrict to sets of β-normal forms that are pairwise
non η-convertible. Indeed, duplication in a linear setting ultimately relies on the following linear
version of the general Separation Theorem for the standard λ-calculus proved by Böhm et al. [18]:

Conjecture 7 (General separation for Λl). Let X = {M1, . . . ,Mn} be a set of β-normal closed
linear λ-terms which are pairwise non η-convertible. Then, for all N1, . . . , Nn linear λ-terms,
there exists a linear λ-term F such that F Mi →∗β Ni, ∀i ≤ n.

Now, let X = {M1, . . . ,Mn} be a finite set of β-normal closed linear λ-terms which are
pairwise non η-convertible. If Conjecture 7 were true, by fixing Ni , 〈Mi,Mi〉 for all i ≤ n,
there would exists a linear λ-term DX such that DXMi →∗β 〈Mi,Mi〉.

To sum up, Remark 1 and Conjecture 7 allow us to connect linear erasure and duplication to
standard λ-calculus notions:

linear solvability ∼ linear erasability
linear separation ∼ linear duplication.

3.1.3 The typed setting
Proposition 5 and Proposition 6 say that duplicable and erasable sets contain only closed terms
and, moreover, that duplicable sets must be finite. In what follows we shall study uniform copying
and erasing mechanisms applied to very special kinds of sets, namely the classes of closed and
normal linear λ-terms that inhabit a given type of IMLL2.

Let us begin with a simple example based on booleans. Due to the lack of explicit weak-
ening, the standard second-order encoding of booleans by means of the type ∀α.α (α (α
is meaningless in IMLL2. An alternative encoding provided by Mairson and Terui [65] is the
following:

B , ∀α.α(α(α⊗ α tt , λx.λy.〈x, y〉 ff , λx.λy.〈y, x〉 (3.2)

where the “truth” tt and the “falsity” ff are the only closed and normal inhabitants of the type
B. Observe that such terms implement the “erasure by garbage collection”: the first element of
the pair is the “real” output, while the second one is garbage.

Starting from the terms tt and ff in (3.2), Mairson shows in [64] that IMLL is expressive
enough to encode boolean functions. Mairson and Terui reformulate that encoding in IMLL2 to
prove results about the complexity of cut-elimination [65], where the advantage of working in
IMLL2 is to assign uniform types to the λ-terms representing boolean functions.

28

The key step to obtain the encoding of boolean functions is the existence of an eraser EB and
a duplicator DB for the type B:

EB , λz.let zII be x, y in (let y be I in x) : B(1 (3.3)

DB , λz.π1(z〈tt, tt〉〈ff, ff〉) : B(B⊗B (3.4)

π1 , λz.let z be x, y in (let EB y be I in x) : (B⊗B)(B (3.5)

where π1 is the linear λ-term projecting the first element of a pair. When applied to a closed
and normal inhabitant of B, i.e. either tt or ff, the eraser EB consumes it until an identity is
reached, while the duplicator DB produces a pair containing two copies of it:

EB tt→∗β I DB tt→∗β 〈tt, tt〉
EB ff→∗β I DB ff→∗β 〈ff, ff〉

Let us remark that erasability in IMLL2 is subtler than the untyped case, since the type-
theoretical constraints force the eraser EB to make use of something more than mere stacks of
identities (see Lemma 4). Also, note that both the possible outcomes of duplication 〈tt, tt〉
and 〈ff, ff〉 are built-in components of DB. In accordance with the given input, DB selects the
right pair representing the result by erasing the unwanted one. Then, this linear mechanism of
duplication works by selection and erasure, i.e. by a stepwise elimination of useless data until the
desired result shows up.

Henceforth, closed and normal linear λ-terms will be called “values”:

Definition 7 (Values). A value is a linear λ-term that is both (β)-normal and closed. Values
are ranged over by V .

The analysis of (3.3) and (3.4) leads to the following formal notions:

Definition 8 (Duplicable and erasable types in IMLL2). Let A be a type in IMLL2:

• we say that A is an erasable type if a linear λ-term EA : A(1 exists such that EA V →∗β I,
for every value V of A, and we call EA eraser of A;

• we say that A is a duplicable type if a linear λ-term DA : A (A ⊗ A exists such that
DA V →∗βη 〈V, V 〉, for every value V of A, and we call DA duplicator of A.

Remark 2. Duplicators in the typed setting are defined with the help of the η-reduction, as op-
posed to Definition 6. We shall use η-reduction in the proof of Theorem 10, since the duplicators
we will construct η-expand a value before copying it. Moreover, observe that the restriction of
duplication and erasure to values, i.e. to closed and normal linear λ-terms, causes no loss of
generality. On the one hand, Proposition 5.(1) and Proposition 6 imply that only closed terms
can be duplicated or erased linearly. On the other hand, every type has infinitely many (closed)
inhabitants, while Proposition 6 states that a duplicable set of linear λ-terms must be finite.
Indeed, a necessary condition for duplicable types is that the set of values that inhabit them is
finite: this is not always assured in IMLL2 as pointed out in Example 6.

The type B in (3.2) is a typical example of duplicable and erasable type, whose eraser and
duplicator are, respectively, the terms in (3.3) and (3.4).

In [65], Mairson and Terui generalize the mechanism of linear erasure and duplication of B
to the class of closed Π1 types, we shall call “ground” for ease of reference:

29

Definition 9 (Π1 and Σ1 [65]). The following mutually defined grammars generate Π1 and Σ1:

Π1 := α | Σ1 (Π1 | ∀α.Π1

Σ1 := α | Π1 (Σ1

Definition 10 (Ground type). A ground type is a closed Π1 type.

We note that the universal quantifier ∀ occurs only positively in a Π1 type, hence in ground
types.

The type B in (3.2), the unit 1 and the tensor A⊗B (Definition 3) are all examples of ground
types, if A and B are. In fact, following [65], tensors and units can occur also to the left-hand
side of a linear implication “(”, even in negative positions. The reason is that we can ignore
them in practice, thanks to the isomorphisms:

((A⊗B)(C) ˛ (A(B(C) (1(C) ˛ C.

As we shall see in the next section, the set of values that inhabit a Π1 type is always finite
(see Lemma 16). So, ground types represent finite data types, while the values that inhabit
ground types represent their data. According to this idea, the following proposition states that
all values are data of some data type:

Proposition 8. Every closed linear λ-term M has a ground type.

Proof. Every closed linear λ-term M is typable in IMLL by Theorem 3. Types in IMLL are
quantifier-free instances of Π1 types. Hence, M has also a Π1 type A in IMLL2. Let FV (A) =
{α1, . . . , αn}. Since M inhabits A, it also inhabits A = ∀α1. · · · .∀αn.A, which is a closed Π1

type, i.e. a ground type in IMLL2.

Ground types have an eraser:

Theorem 9 ([65]). Every ground type is erasable.

Proof. The result follows from proving the statements below by simultaneous induction:

• for every Π1 type A with free type variables α1, . . . , αn there exists a linear λ-term EA such
that ` EA : A[1/α1, . . . ,1/αn] (1;

• for every Σ1 type A with free type variables α1, . . . , αn there exists a linear λ-term HA such
that ` HA : A[1/α1, . . . ,1/αn].

If A = α, thenA[1/α] = 1, and we define EA = HA , I. If A = B(C, thenA[1/α1, . . . ,1/αn] =
B[1/α1, . . . ,1/αn](C[1/α1, . . . ,1/αn]. If B (C is a Π1 type, then B is a Σ1 type and C is
a Π1 type. By induction hypothesis, HB and EC exist, so that we define EB(C , λz.EC(zHB).
Otherwise, B (C is a Σ1 type, so that B is a Π1 type and C is a Σ1 type. By induction
hypothesis, the terms EB and HC exist, so that we define HB(C , λz.let EB z be I in HC . The
last case is when A = ∀α.B, and A can only be a Π1 type. By induction hypothesis, EB exist,
so that we define E∀α.B , EB .

Remark 3. In [65], Mairson and Terui actually show the existence of an eraser for all closed
eΠ1 types, that properly extend the class of ground types. The eΠ1 types are generated by the
following grammar:

eΠ1 := α | eΣ1 (eΠ1 | ∀α.eΠ1 (3.6)
eΣ1 := α | eΠ1 (eΣ1 | ∀α.eΣ1 (3.7)

30

where, in the last clause of (3.7), ∀α.eΣ1 must be inhabited. Roughly, a eΠ1 type (resp. eΣ1

type) is like a Π1 type (resp. Σ1 type), but it may additionally contain negative (resp. positive)
occurrences of inhabited ∀ types. A typical example of closed eΠ1 type is (B(B)(B. If the
ground types are finite data types, the closed eΠ1 types can be seen as functionals over finite
data types. We decided not to consider this class to give a uniform account of the mechanisms
of erasability and duplication. Moreover, several remarkable closed eΠ1 types, like for example
(B(B)(B, are built up from (inhabited) ground types and linear implications, so that their
erasers can be easily built from erasers of these latter. As an example, an eraser of (B(B)(B
is λx.EB(xI).

Inhabited ground types have a duplicator:

Theorem 10. Every inhabited ground type is duplicable.

Mairson and Terui sketch the proof of Theorem 10 in [65]. In the next section we shall develop
it in every detail.

3.2 The Duplication Theorem
In this section we give a detailed proof of Theorem 10 for IMLL2, which states that if A is an
inhabited ground type, i.e an inhabited closed Π1 type, then A is also a duplicable type. By
Definition 8, this amounts to show that a linear λ-term DA : A (A ⊗ A exists such that
DA V →∗βη 〈V, V 〉 holds for every value V of A.

We shall construct the duplicator DA of a ground type A as the composition of three linear
λ-terms, diagrammatically displayed in Figure 3.3. Taking a value V of type A as input, DA
implements the following three main operations:

(1) expand V to its η-long normal form VA;

(2) compile VA to a linear λ-term dVAe which encodes VA as a boolean tuple;

(3) copy and decode dVAe, obtaining the duplication 〈VA, VA〉 of VA, that η-reduces to 〈V, V 〉.

Point (3) is the one implementing Mairson and Terui’s “duplication by selection and erasure”
discussed in the previous section. In particular, duplication is by means of the term decsA in
Section 3.2.3. It nests a series of if-then-else constructs which is a look-up table, possibly
quite big, that stores all the pairs of normal inhabitants of A. Each of them represents a possible
outcome of the duplication. Given a boolean tuple dVAe in input, the nested if-then-else
select the corresponding pair 〈VA, VA〉, erasing all the remaining “candidates”. The inhabitation
condition for A stated in Theorem 10 ensures that the default pair 〈V ′, V ′〉 exists as a sort of
“exception”. We “throw” it each time the boolean tuple that decsA receives as input does not
encode any value of type A.

For each such component of DA we dedicate a specific subsection. For the sake of presentation,
in this section we focus on terms of IMLL2 rather than on derivations, so that when we say
that a term M has type A with context Γ, we clearly mean that a derivation D exists such
that D / Γ ` M : A. Moreover, as assumed in Section 2.5.3, terms are considered modulo
α-equivalence.

3.2.1 The linear λ-term subsA

Roughly, the λ-term subsA, when applied to a value V of ground type A, produces its η-long
normal form VA whose type is obtained from A as follows: we strip away every occurrence of ∀

31

A A−[Bs] Bs A⊗A

V VA dVAe 〈VA, VA〉

subsA encsA decsA

Figure 3.3: The diagrammatic representation of DA.

and we substitute each type variable with the s-ary tensor of boolean datatypes Bs = B⊗ s. . .⊗B,
for some s > 0.

Before introducing the λ-term subsA, we need the definition of η-long normal form:

Definition 11 (η-long normal forms). Let D /Γ `M : B be cut-free. We define the η-expansion
of D, denoted DΓ

B , as the derivation obtained from D by substituting every occurrence of:

ax
x : A ` x : A

with a derivation of x : A ` M ′ : A, for some M ′, whose axioms have form y : α ` y : α.
Given D / Γ `M : B, its η-expansion DΓ

B is unique, and its concluding judgement is denoted by
Γ ` MΓ

B : B. The term MΓ
B is called η-long normal form and is such that MΓ

B →∗η M . If the
context Γ of an η-expanded D is x1 : A1, . . . , xn : A we may write DA1,...,An

B and MA1,...,An
B . If

Γ is empty, we feel free to write DB and MB .

Lemma 11. Let D /Γ `M : A be a cut-free derivation in IMLL2, and let MΓ
A denote the η-long

normal form obtained by η-expanding D. Then:

(1) If M = x, A = α, and Γ = x : α then xαα = x.

(2) If M = x, A = ∀α.B, and Γ = x : ∀α.B then x∀α.B∀α.B = xBB.

(3) If M = x, A = B(C, and Γ = x : B(C then xB(C
B(C = λy.(xyBB)CC .

(4) If A = ∀α.B then MΓ
∀α.B = MΓ

B〈γ/α〉, for some fresh type variable γ.

(5) If M = λx.N and A = B(C then (λx.N)Γ
B(C = λx.NΓ,x:B

C .

(6) If M = P [yN/x] and Γ = ∆,Σ, y : B (C, where P has type A with context ∆, x : C and
N has type B with context Σ, then (P [yN/x])Γ

A = P∆,x:C
A [yNΣ

B/x].

(7) If M = P [yN/x] and Γ = Γ′, y : ∀α.B then (P [yN/x])Γ′,y:∀α.B
A = (P [yN/x])

Γ′,y:B〈D/α〉
A , for

some suitable type D.

Proof. Just follow the definition of η-long normal form.

Definition 12 (The map (_)−). Let A be a type in IMLL2. We define A− by induction on the
complexity of the type:

α− , α

(A(B)− , A−(B−

(∀α.A)− , A−〈γ/α〉

32

where γ is taken from the head of an infinite list of fresh type variables. The notation A[B]
denotes the type obtained by replacing B for every free type variable of A. Moreover, if Γ = x1 :
A1, . . . , xn : An, then Γ− stands for x1 : A−1 , . . . , xn : A−n , and Γ[B] stands for x1 : A1[B], . . . , xn :
An[B].

Lemma 12. Let A be a Π1 type and A1, . . . , An be Σ1 types. If x1 : A1, . . . , xn : An ` M : A
then, for every type B, x1 : A−1 [B], . . . , xn : A−n [B] `M : A−[B].

Proof. Easy induction on a derivation of x1 : A1, . . . , xn : An `M : A.

Definition 13 (The linear λ-term subsA). Let s > 0. We define the linear λ-terms subsA :
A[Bs](A−[Bs], where A is a Π1 type, and sub

s
A : A−[Bs](A[Bs], where A is a Σ1 type, by

simultaneous induction on the size of A:

subsα , λx.x sub
s
α , λx.x

subs∀α.B , subsB

subsB(C , λx.λy.sub
s
C(x (sub

s
B y)) sub

s
B(C , λx.λy.sub

s
C(x (subsB y)).

The following will be used to compact the proof of some of the coming lemmas.

Definition 14. Let s > 0. Let A be a Π1 type, and let Γ = x1 : A1, . . . , xn : An be a context of
Σ1 types. IfM is an inhabitant of A[Bs] with context Γ[Bs], thenM [Γ] denotes the substitution:

M [sub
s
A1
x′1/x1, . . . , sub

s
An x

′
n/xn]

for some x′1, . . . , x′n.

Lemma 13. Let s > 0 and z be of type A[Bs].

(1) If A is a Π1 type, then subsA z →∗β zAA .

(2) If A is a Σ1 type, then sub
s
A z →∗β zAA .

Proof. We prove both points by simultaneous induction on |A|:

• CaseA = α. Both the statements are straightforward since we have zαα = z by Lemma 11.(1).

• Case A = ∀α.B. This case applies to point (1) only. By induction hypothesis, for every vari-
able x of type B[Bs], subsB x→∗β xBB . The λ-term subsB has type B[Bs](B−[Bs], which
is equal to (B〈Bs/α〉)[Bs] ((∀α.B)−[Bs]. Hence, subsB has also type (∀α.B)[Bs] (
(∀α.B)−[Bs]. Moreover, by Definition 13 we have subsB = subs∀α.B . Therefore, for every
variable z of type (∀α.B)[Bs] we have subs∀α.B z = subsB z →∗β zBB . But zBB = z∀α.B∀α.B by
Lemma 11.(2).

• Case A = B (C. We prove point (1) only (point (2) is similar). Let z be of type
(B(C)[Bs] = B[Bs](C[Bs]. Then we have

subsB(C z = (λx.λy.subsC(x(sub
s
B y)))z Def. 13

→β λy.sub
s
C(z(sub

s
B y))

= λy.(subsC w)[z(sub
s
B y)/w]

→∗β λy.wCC [z(sub
s
B y)/w] IH on point (1)

→∗β λy.wCC [zyBB/w] IH on point (2)

= λy.(zyBB)CC

= zB(C
B(C . Lem. 11.(3)

33

Lemma 14. Let s > 0. If z : A[Bs], where A is a Π1 type, then subsA z
A
A →∗β zAA .

Proof. We prove it by induction on |A|:

• Case A = α. The statement is straightforward since we have zαα = z by Lemma 11.(1)

• Case A = ∀α.B. By Definition 13, subs∀α.B = subsB and we use the induction hypothesis.

• Case A = B(C. Then we have

subsB(C z
B(C
B(C = (λx.λy.subsC(x(sub

s
B y)))zB(C

B(C Def. 13

= (λx.λy.subsC(x(sub
s
B y)))(λw.(zwBB)CC) Lem. 11.(3)

→β λy.sub
s
C((λw.(zwBB)CC)(sub

s
B y))

→β λy.sub
s
C(z(sub

s
B y)BB)CC

→∗β λy.subsC(zyBB)CC Lem. 13.(2)

= λy.(subsC w
C
C)[zyBB/w]

→∗β λy.wCC [zyBB/w] IH

= λy.(zyBB)CC

=α z
B(C
B(C . Lem. 11.(3)

Lemma 15. Let s > 0. Let A be a Π1 type, and let Γ = x1 : A1, . . . , xn : An be a context of Σ1

types. If Γ[Bs] `M : A[Bs], with M normal, then:

subsAM [Γ]→∗β MΓ
A.

Proof. Let QΓ,A be the number of universal quantifications in A1, . . . , An, A. We prove the
result by induction on |M | + QΓ,A. If M = z then Γ = z : A and subsAM [Γ] = subsA(sub

s
A z).

By point (2) of Lemma 13 and by Lemma 14 we have subsA(sub
s
A z) →∗β subsA z

A
A →∗β zAA . If

M = λz.N then we have two cases depending on the type of M :

• Case A = ∀α.B. The λ-term subsB has type B[Bs] (B−[Bs], i.e. (B〈Bs/α〉)[Bs] (
(∀α.B)−[Bs], so that subsB has also type (∀α.B)[Bs] ((∀α.B)−[Bs]. By Definition 13
we have subsB = subs∀α.B . By using the induction hypothesis, for every M of type
(∀α.B)[Bs] with context Γ[Bs], we have subs∀α.BM [Γ] = subsBM [Γ] →∗β MΓ

B . Moreover,
by Lemma 11.(4), MΓ

B = MΓ
∀α.A.

• Case A = B(C. Then we have:

subsB(CM [Γ] = (λx.λy.subsC(x (sub
s
B y)))(λz.N)[Γ] Def. 13

→β λy.sub
s
C((λz.N)[Γ] (sub

s
B y))

→β λy.sub
s
C((N [Γ])[sub

s
B y/z])

= λy.subsC(N [Γ, y : B]) Def. 14

→∗β λy.N
Γ,y:B
C IH

= (λy.N)Γ
B(C Lem. 11.(5)

=α M
Γ
B(C .

34

If M = P [zN/w] then the type of z cannot have an outermost universal quantification, because
Γ is a context of Σ1 types. So z has type of the form B (C in Γ. Let Γ′ and Γ′′ be contexts
such that Γ = Γ′,Γ′′, z : B(C, dom(Γ′) = FV (P), and dom(Γ′′) = FV (N). Then we have:

subsAM [Γ] = subsA(P [zN/w])[Γ]

= subsA(P [Γ′][(zN)[Γ′′, z : B(C]/w])

= subsA(P [Γ′][(sub
s
B(C z)(N [Γ′′])/w])

→∗β subsA(P [Γ′][sub
s
C(z (subsB (N [Γ′′])))/w]) Def. 13

→∗β subsA(P [Γ′][sub
s
C(zNΓ′′

B)/w]) IH

= (subsA P [Γ′][sub
s
C w/w])[zNΓ′′

B /w]

= (subsA P [Γ′, w : C])[zNΓ′′

B /w] Def. 14

→∗β P
Γ′,w:C
A [zNΓ′′

B /w] IH

= (P [zN/w])Γ
A. Lem. 11.(6)

3.2.2 The linear λ-term encsA

A missing ingredient in the previous subsection is the value of s, which is fixed to some strictly
positive integer. To determine s we need the following property:

Lemma 16 (Types bound terms). For every cut-free derivation D / Γ `M : B in IMLL2 which
does not contain applications of ∀L, the following inequations hold:

|M | ≤ |MΓ
B | ≤ |Γ−|+ |B−| ≤ 2 · |MΓ

B | (3.8)

where (_)− is as in Definition 12, and MΓ
A is as in Definition 11.

Proof. The inequation |M | ≤ |MΓ
B | is by definition of η-long normal form. Now, let DΓ

B be the
η-expansion of D, so that DΓ

B/Γ `MΓ
B : B. We prove the remaining two inequations by induction

on DΓ
B . If it is an axiom then, by definition of η-expansion, it must be of the form x : α ` x : α,

where MΓ
B = x. Hence, |x| ≤ 2 · |α| ≤ 2 · |x|. Both the rules (R and (L, increase by one the

overall size of the types in a judgment and of the corresponding term, so the inequalities still
hold. Last, the rules for ∀ do not affect the size of both Γ−, B− and MΓ

B .

Notice that Lemma 16 does not hold in general if D contains instances of the inference rule
∀L, since one can exploit the inference rule ∀L to “compress” the size of a type.

Now, consider a cut-free derivation D/ ` M : A, where A is a ground type. Since negative
occurrences of ∀ are not allowed in A, D contains no application of ∀L and, by Lemma 16, this
implies that |M | ≤ |A−|. This limits the number of variables a generic inhabitant of A has, so
that we can safely say that the variables ofM must certainly belong to a fixed set {x1, . . . , x|A−|}.
The next step is to show that we can encode every normal form as a tuple of booleans, i.e. as
elements in Bs with a sufficiently large s. Actually, we are interested in η-long normal forms
only, due to the way the linear λ-term subsA acts on inhabitants of A as shown in the previous
subsection. So, given a ground type A, we can represent the η-long normal forms of type A with
tuples of type BO(|A−| · log |A−|), since each such linear λ-term has at most |A−| symbols, each
one encoded using around log |A−| bits. By setting s = c · (|A−| · log |A−|) for some c > 0 large
enough, there must exist a coding function d_e : Λs −→ Bs, where Λs is the set of all normal

35

linear λ-terms having size bounded by s. The role of the λ-term encsA is to internalize the coding
function d_e in IMLL2 as far as the η-long normal forms of a fixed type A are concerned.

The coming Lemma 18 relies on an iterated selection mechanism, i.e. a nested if-then-else
construction. In order to define selection, we first we need to extend the projection in (3.5).

Definition 15 (Generalized projection). Let A be a ground type. For all k ≥ 0 and ~m =
m1, . . . ,mk ≥ 0, the linear λ-term π ~m1 is defined below:

π ~m1 ,

{
λz.let z be x, y in (let EA y be I in x) if k = 0

λz.let z be x, y in (let EA (y ttm1 . . . ttmk) be I in x) if k > 0

with type B ⊗ B (B, where B , Bm1 (. . .(Bmk (A. When k = 0 we simply write π1

in place of π ~m1 , whose type is A⊗A(A.

Definition 16 (Generalized selection). Let A be a ground type and let Mttn , M〈ttn−1,ff〉, . . . ,
M〈tt,ffn−1〉, Mffn be (not necessarily distinct) normal inhabitants of Bm1 (. . .(Bmk (A,
for some n ≥ 1, k ≥ 0, and ~m = m1, . . . ,mk ≥ 0. We define the linear λ-term:

if x then [Mttn ,M〈ttn−1,ff〉, . . . ,M〈tt,ffn−1〉,Mffn]~m (3.9)

with type Bm1 (. . .(Bmk (A and context x : Bn by induction on n:

• n = 1: if x then [Mtt,Mff]
~m , π ~m1 (xMttMff).

• n > 1: if x then [Mttn ,M〈ttn−1,ff〉, . . . ,M〈tt,ffn−1〉,Mffn]~m ,

let x be x1, x2 in (if x2 then[
(λy1.if y1 then [Pttn−1 , P〈ttn−2,ff〉, . . . , P〈tt,ffn−2〉, Pffn−1]~m),

(λy2.if y2 then [Qttn−1 , Q〈ttn−2,ff〉, . . . , Q〈tt,ffn−2〉, Qffn−1]~m)
]n−1,~m

)x1

where, π ~m1 is as in Definition 15 and, for every n-tuple 〈b1, . . . , bn〉 of booleans, P〈b1,...,bn〉 ,
M〈〈b1,...,bn〉,tt〉, Q〈b1,...,bn〉 ,M〈〈b1,...,bn〉,ff〉.

when k = 0 we feel free of ruling out the apex ~m in (3.9).

Lemma 17. Let A be a ground type and let Mttn , M〈ttn−1,ff〉, . . . , M〈tt,ffn−1〉, Mffn be (not
necessarily distinct) normal inhabitants of Bm1 (. . . (Bmk (A, for some n ≥ 1, k ≥ 0,
and ~m = m1, . . . ,mk ≥ 0. For every n-tuple of booleans 〈b1, . . . , bn〉 it holds that:

if 〈b1, . . . , bn〉 then (Mttn ,M〈ttn−1,ff〉, . . . ,M〈tt,ffn−1〉,Mffn)→∗β M〈b1,...,bn〉.

Proof. Straightforward.

Notice that, if n = 1 and k = 0 in Definition 16, we get the usual if-then-else construction
defined in [40] as:

if x then M1 else M2 , π1(xM1M2) (3.10)

with type A and context x : B, where π1 : A⊗A(A is as in Definition 15. Clearly, if b1 , tt

and b2 , ff, then if bi then M1 else M2 →∗β Mi for i = 1, 2.
Before defining the linear λ-term encsA we need to encode the λ-abstractions and the appli-

cations in IMLL2.

36

Lemma 18. Let s > 0. The following statements hold:

(1) A linear λ-term abss : Bs (Bs (Bs exists such that absdxedMe →∗β dλx.Me, if
|λx.M | ≤ s and x ∈ {x1, . . . , xs}.

(2) A linear λ-term apps : Bs (Bs (Bs exists such that appdMedNe →∗β dMNe, if
|MN | ≤ s.

Proof. We sketch the proof of point (1) only, since point (2) is similar. We let b denote the
encoding of the boolean value b in IMLL2. The linear λ-term abs is of the form:

λx.λy.(if x then [Ptts , P〈tts−1,ff〉, . . . , P〈ff,tts−1〉, Pffs]
s) y

where, for all s-tuple of booleans T = 〈b1, . . . , bs〉, the linear λ-term PT with type Bs (Bs is
as follows:

λy.if y then [QTtts , Q
T
〈tts−1,ff〉, . . . , Q

T
〈ff,tts−1〉, Q

T
ffs]

For all T = 〈b1, . . . , bs〉 and for all T ′ = 〈b′1, . . . , b′s〉 we define:

QTT ′ =

dλx.Me if 〈b1, . . . , bs〉 = dxe, 〈b′1, . . . , b′s〉 = dMe,

and |λx.M | ≤ s

〈tt, s. . ., tt〉 otherwise.

The λ-term encsA, given a value VA in η-long normal form and of type A, combines the
λ-terms abss and apps to construct its encoding.

Definition 17 (The linear λ-term encsA). Let s > 0. We define the linear λ-terms encsA :
A−[Bs] (Bs, where A is a Π1 type, and encsA : Bs (A−[Bs], where A is a Σ1 type, by
simultaneous induction on the size of A:

encsα , λz.z encsB(C , λz.abs
sdxe (encsC (z (encsB dxe)))

encsα , λz.z encsB(C , λz.λx.enc
s
C (appsz (encsB x))

with x chosen fresh in {x1, . . . , xs}.

The following will be used to compact the proof of some of the coming lemmas.

Definition 18. Let s > 0, and let A be a Π1 type and Γ = x1 : A1, . . . , xn : An be a context
of Σ1 types. If M is an inhabitant of type A−[Bs] with context Γ−[Bs] then M [Γ] denotes the
substitution:

M [encsA1
x′1/x1, . . . , enc

s
An x

′
n/xn]

for some x′1, . . . , x′n.

To prove that encsA is able to encode a value VA of type A we need an intermediate step. We
first prove that encsA substitutes every λ-abstraction in VA with an instance of abss, and every
application with an instance of apps, thus producing a “precode”. Then we prove that, when
every free variable in it has been substituted with its respective encoding, the precode reduces
to dVAe.

37

Definition 19. Let s > 0. If M is a linear λ-term in normal form such that |M | ≤ s, we define
Ms by induction on |M |:

• M = x if and only if Ms = x,

• M = λx.N if and only if Ms = abss dx′eNs[dx′e/x],

• M = PQ if and only if Ms = apps P sQs,

where x′ is fresh, chosen in {x1, . . . , xs}.

Lemma 19. Let s > 0. If M and N are linear λ-terms, then Ms[Ns/x] = (M [N/x])s.

Proof. By induction on |M |. IfM = x then xs[Ns/x] = x[Ns/x] = Ns = (x[N/x])s. IfM = PQ
then either x occurs in P or it occurs in Q. Let us consider the case x ∈ FV (P), the other case
being similar: by using the induction hypothesis we have (PQ)s[Ns/x] = apps P s[Ns/x]Qs =
apps(P [N/x])sQs = (P [N/x]Q)s = ((PQ)[N/x])s. If M = λy.P then we have (λy.P)s[Ns/x] =
abss dy′eP s[Ns/x][dy′e/y] = abss dy′e (P [N/x])s[dy′e/y] = (λy.P [N/x])s = ((λy.P)[N/x])s.

Lemma 20. Let s > 0. If M is a linear λ-term in normal form such that |M | ≤ s with free
variables x1, . . . , xn, then

Ms[~dx′e]→∗β dM [x′1/x1, . . . , x
′
n/xn]e

where ~dx′e = [dx′1e/x1, . . . , dx′ne/xn] and x′1, . . . , x′n are distinct and fresh in {x1, . . . , xs}.

Proof. By induction on |M |. If M = x then ∃i ≤ n xi = x, so that xs[dx′ie/x] = x[dx′ie/x] =
dx′ie = dx[x′i/x]e. If M = λy.N then, using the induction hypothesis, we have:

(λy.N)s[~dx′e] = (abss dy′eNs[dy′e/y])[~dx′e]

= abss dy′eNs[~dx′e, dy′e/y]

→∗β abss dy′e dN [x′1/x1, . . . , x
′
n/xn, y

′/y]e
→∗β dλy′.N [x′1/x1, . . . , x

′
n/xn, y

′/y]e Lem. 18

=α d(λy.N)[x′1/x1, . . . , x
′
n/xn]e.

If M = PQ then let y1, . . . , ym (resp. z1, . . . , zk) be the free variables of P (resp. Q), and let
~x′ = y′1, . . . , y

′
m, z

′
1, . . . , z

′
k. Then we have:

(PQ)s[~dx′e] =

= apps P s[~dy′e]Qs[~dz′e]
→∗β apps dP [y′1/y1, . . . , y

′
m/ym]e dQ[z′1/z1, . . . , z

′
k/zk]e

→∗β dP [y′1/y1, . . . , y
′
m/ym]Q[z′1/z1, . . . , z

′
k/zk]e Lem. 18

= d(PQ)[x′1/x1, . . . , x
′
n/xn]e.

Lemma 21. Let M be a η-long normal form of type A with context Γ = x1 : A1, . . . , xn : An,
where A is a Π1 type and Γ is a context of Σ1 types, and let

∑m
i=1 |A

−
i | + |A−| = k and s =

c · (k · log k), for some c large enough. Then:

(encsAM [Γ])[~dx′e]→∗β dM [x′1/x1, . . . , x
′
n/xn]e

where ~dx′e = [dx′1e/x1, . . . , dx′ne/xn], with x′1, . . . , x′n distinct and chosen fresh in {x1, . . . , xs}.

38

Proof. First, notice that, by Lemma 12, Γ−[Bs] `M : A−[Bs]. By Lemma 20 it suffices to prove
by induction on |M | that the reduction encsAM [Γ] →∗β Ms holds. If M = x then A = α and
Γ = x : α, becauseM is in η-long normal form, so that we have encsα x[x : α] = encsα(encsα x)→∗β
x = xs. If M = λy.N then A = B(C, so that:

encsB(C((λy.N)[Γ])

→β abss dx′e(encsC((λy.N [Γ])(encsB dy′e))) Def. 17

→β abss dy′e(encsC(N [Γ][encsB dy′e/y]))

= abss dy′e(encsC(N [Γ][encsB x/x]))[dy′e/y]

= abss dy′e(encsC(N [Γ, y : B]))[dy′e/y] Def. 17
→∗β abss dy′e(Ns[dy′e/y]) IH

= (λy.N)s.

Last, suppose M = P [yN/x], and let Σ, ∆ be contexts such that Γ = Σ,∆, y : B (C,
dom(Σ) = FV (P), and dom(∆) = FV (N). Then we have:

encsA(P [yN/x])[Γ]

= encsA(P [Σ][(yN)[∆, y : B(C]/x])

= encsA(P [Σ][(encsB(C y)N [∆]/x])

→∗β encsA(P [Σ][encsC(apps y(encsB N [∆]))/x]) Def. 17

→∗β encsA(P [Σ][encsC(apps y Ns)/x]) IH

= encsA(P [Σ][encsC(yN)s/x])

= encsA(P [Σ, x : C])[(yN)s/x] Def. 17
→∗β P s[(yN)s/x] IH

= (P [yN/x])s Lem. 19.

3.2.3 The linear λ-term decsA

The linear λ-term decsA is the component of DA requiring the type inhabitation. Roughly, it
takes a tuple of boolean values encoding the η-long normal form VA of a ground type A in input,
and it produces the pair 〈VA, VA〉. To ensure that decsA is defined on all possible inputs, it is
built in such a way that it returns a default inhabitant of A whenever the tuple of booleans in
input does not encode any λ-term.

Definition 20 (The linear λ-term decsA). Let A be a ground type and let V ′ be a value of
type A. If for some c large enough s = c · (|A−| · log |A−|), then we define the linear λ-term
decsA : Bs(A⊗A as follows:

λx.if x then [Ptts , P〈tts−1,ff〉, . . . , P〈ff,tts−1〉, Pffs]

where, for all T = 〈b1, . . . , bs〉 of type Bs:

PT =

{
〈VA, VA〉 if 〈b1, . . . , bs〉 = dVAe
〈V ′, V ′〉 otherwise.

We are now able to prove the fundamental result of this section:

39

Theorem 22 (Duplication [65]). Every inhabited ground type is duplicable.

Proof. The duplicator DA of a inhabited ground type is defined as follows: we fix s = c · (|A−| ·
log |A−|), we fix a default value V ′ of A, and we set:

DA , decsA ◦ encsA ◦ subsA : A(A⊗A

where M ◦N , λz.M(Nz). By Lemma 15, Lemma 17, and Lemma 21, for all values V of type
A, we have:

DA V →∗β 〈VA, VA〉 →∗η 〈V, V 〉.

Remark 4. If A is a ground type inhabited by the value V ′, we shall write DV
′

A to stress that the
default inhabitant of A used in constructing the duplicator DA of A is V ′.

3.3 The system LEM and basic properties
In this section, we present the Linearly Exponential Multiplicative Type Assignment, LEM for
short, a new system internalizing the mechanisms of weakening and contraction that exist in
IMLL2 (Theorems 9 and 10). It is defined as a type assignment for the term calculus Λl,´
that we obtain by endowing Λl with explicit and type-dependent constructs copy and discard

performing duplication and erasure in a limited way. LEM extends IMLL2 with inference rules
for the modality “´” that closely recall the exponential rules in Linear Logic.

We explore both the computational and the proof-theoretical properties of the system. First,
we define special cut-elimination steps, called lazy, that prevent undesired forms of duplication
and erasure of derivations. The lazy cut-elimination is too weak, since we may run into deadlock
situations, i.e. instances of cut that cannot be ruled out. We then show a relevant class of types,
called lazy types, whose derivations can always be rewritten into cut-free ones by applying a
specific lazy cut-elimination strategy (Theorem 29).

Thanks to a careful positioning of “´” in the types of LEM, essentially as done in [40], we are
able to prove the Subject reduction property (Theorem 32).

Finally, we define a translation from LEM into IMLL2 and we prove a simulation result (The-
orem 35) showing how the constructs copy and discard in the former system relate to the
duplicators and the erasers we studied in the latter. One of the striking aspects of the trans-
lation is Theorem 37, stating essentially that the construct copy exponentially compresses the
mechanism of linear duplication of IMLL2.

3.3.1 The system LEM

The types of LEM are built from the linear implication “(”, the second-order quantifier “∀”, and
the new modality “´” that applies only to closed types free from negative occurrences of ∀. These
latter types are the representatives in LEM of the ground types in Definition 10, and will be the
only ones the system is allowed to explicitly weaken and contract.

Definition 21 (Types of LEM). Let X be a denumerable set of type variables. The following
grammar (3.11) generates the linear types, while the grammar (3.12) generates the exponential
types:

A := α | σ(A | ∀α.A (3.11)
σ := A | ´σ (3.12)

40

where α ∈ X and, in the last clause of the grammar (3.12), i.e. the one introducing ´σ, the type
σ must be closed and without negative occurrences of ∀. The set of all types generated by the
grammar (3.12) will be denoted Θ´. A type is strictly exponential if it is of the form ´σ. A strictly
exponential context is a context containing only strictly exponential types and, similarly, a linear
context contains only linear types. If Γ is x1 : A1, . . . , xn : An, then ´Γ is x1 : ´A1, . . . , xn : ´An.
The standard meta-level substitution of B for every occurrence of α in A is denoted A〈B/α〉.
Finally, the size of a type σ in Θ´, written |σ|, is the number of nodes in the syntax tree of σ.

Remark 5. Syntactically replacing the Linear Logic modality “ !” for “´” in (3.11) and (3.12) yields
a subset of Gaboardi and Ronchi’s essential types [40], introduced to prove Subject reduction in
a variant of Soft Linear Logic [56]. Essential types forbid the occurrences of modalities in the
right-hand side of an implication, such as in A(!B (see Section 4.2.1).

We shall define LEM as a type assignment for the term calculus Λl,´, which is essentially
the standard linear λ-calculus with two type-dependent constructs for erasure and duplication,
discardσ and copyVσ , the latter being also decorated with a value V , i.e. a closed and normal
linear λ-term. Values, will be the only terms these new constructs are able to copy and erase.

Definition 22 (The calculi Λ´ and Λl,´).

• Let V be a denumerable set of variables. The set Λ´ of terms is generated by the following
grammar:

M := x | λx.M | MM | discardσM in M | copyVσ M as x, y in M (3.13)

where x, y ∈ V, V is a value (Definition 7), and σ ∈ Θ´. The set of the free variables of
a term, and the notion of size are standard for variables, abstractions, and applications.
Their extensions to the new constructors are:

FV (discardσM in N) = FV (M) ∪ FV (N)

FV (copyVσ M as x, y in N) = FV (M) ∪ (FV (N) \ {x, y})
(3.14)

|discardσM in N | = |M |+ |N |+ 1

|copyVσ M as x, y in N | = |M |+ |N |+ |V |+ 1.

The meta-level substitution of N for the free occurrences of x in M , written M [N/x], is
defined as usual. A context is a term containing a unique hole [·], generated by the following
grammar:

C := [·] | λx.C | CM | MC | discardσ C in M | discardσM in C
copyVσ C as x, y in M | copyVσ M as x, y in C

(3.15)

where, given a context C and a term M , C[M] denotes the term obtained by substituting
the unique hole in C with M allowing the possible capture of free variables of M .

• The one-step reduction relation → is a binary relation over Λ´. It is defined by the reduction
rules in Figure 3.4(a) and by the commuting conversions in Figure 3.4(b), and applies in
any context generated by (3.15). Its reflexive and transitive closure is denoted→∗. A term
is said a (or is in) normal form if no reduction applies to it.

• A term M ∈ Λ´ is linear if:

41

(λx.M)N → M [N/x]

discardσ V in M → M

copyV
′

σ V as x, y in M → M [V/x, V/y]

(a) Reduction rules.

(discardσM in N)P → discardσM in (NP)

discardσ (discardτ M in N) in P → discardτ M in (discardσ N in P)

copyVσ (discardτ M in N) as x, y in P → discardτ M in (copyVσ N as x, y in P)

(copyVσ M as x, y in N)P → copyVσ M as x, y in (NP)

discardσ (copyVτ M as x, y in N) in P → copyVτ M as x, y in (discardσ N in P)

copyV
′

σ (copyVτ M as x, y in N) as z, v in P → copyVτ M as x, y in (copyV
′

σ N as z, v in P)

(b) Commuting conversions.

Figure 3.4: Reduction rules and commuting conversions for Λ´.

– each free variable of M has just one occurrence free in it;
– for each subterm λx.N of M , x occurs in N exactly once;
– for each subterm copyVσ M

′ as y, z in N of M , y and z occur in N exactly once.

The set of all linear terms in Λ´ is denoted Λl,´.
Observe that Λl ⊆ Λl,´. Hence, each value is a linear term in Λl,´.

Proposition 23. If M ∈ Λl,´ and M → N then N ∈ Λl,´.
Proof. Straightforward.

The type assignment system LEM makes both the type and the term annotations in the
constructs discardσ and copyVσ meaningful, and its definition is driven by the structure of the
types in Definition 21.

Definition 23 (The system LEM). LEM is the type assignment system (in sequent style) for
the term calculus Λl,´ displayed in Figure 3.5. It extends IMLL2 in Figure 3.1(a) with the rules
promotion p, dereliction d, weakening w and contraction c. As usual, (R, ∀R, and p are right
rules while (L, ∀L, d, w, and c are left ones.

The rule ax in Figure 3.5 cannot introduce exponential types, like in the type assignment
systems for the essential types [40]. This is the key observation for proving:

Proposition 24. If D / Γ ` M : ´σ is a derivation in LEM, then Γ is a strictly exponential
context.

42

x : A ` x : A
ax

Γ ` N : σ ∆, x : σ `M : τ

Γ,∆ `M [N/x] : τ
cut

Γ, x : σ `M : B

Γ ` λx.M : σ(B
(R

Γ ` N : σ ∆, x : B `M : τ

Γ,∆, y : σ(B `M [yN/x] : τ
(L

x1 : ´σ1, . . . , xn : ´σn `M : σ

x1 : ´σ1, . . . , xn : ´σn `M : ´σ p
Γ, x : σ `M : τ

Γ, y : ´σ `M [y/x] : τ
d

Γ `M : τ

Γ, x : ´σ ` discardσ x in M : τ
w

Γ, y : ´σ, z : ´σ `M : τ ` V : σ

Γ, x : ´σ ` copyVσ x as y, z in M : τ
c

Γ `M : A〈γ/α〉 γ 6∈ FV (Γ)

Γ `M : ∀α.A
∀R

Γ, x : A〈B/α〉 `M : τ

Γ, x : ∀α.A `M : τ
∀L

Figure 3.5: The system LEM.

Proof. By structural induction on the derivation D.

Let us remark that the rules p, d, w, c of LEM are reminiscent of the namesake Linear Logic
exponential rules, but they only apply to types ´σ generated by (3.12), i.e. such that σ is closed
and free from negative occurrences of ∀. Intuitively, a type σ appearing in ´σ can be seen as
the representative in LEM of a ground type (Definition 10). Then, by weakening and contracting
the strictly exponential type ´σ, the rules w and c of LEM mirror the linear contraction and
weakening of a ground type of IMLL2. In particular, the rule c contracting ´σ has one premise
more than the contraction rule in Linear Logic. This premise “witnesses” that the type σ is
inhabited by at least one value V , which is required to faithfully express in LEM the linear
contraction mechanism of IMLL2, as Theorem 10 states that a duplicator exists for those ground
types which are inhabited. In Section 3.3.4, these intuitions will be formalized by introducing a
translation of LEM into IMLL2 (Definition 30) that shows how the construct copyVσ exponentially
compresses the linear duplication mechanism encoded in a duplicator (Theorem 37).

A similar reasoning applies to the construct discardσ, that expresses the eraser of a ground
type in IMLL2. Since duplicators and erasers of a ground type apply to the set of values that
inhabit it, we designed the reduction rules in Figure 3.4(a) in such a way that the constructs
copyVσ and discardσ copy and erase values only.

We conclude by commenting about how “´” and LL’s “!” differ. Intuitively, the latter allows
to duplicate or erase logical structure, or terms, at once, which is the standard way to compu-
tationally interpret contraction and weakening of a logical system. The modality “´” identifies
duplication and erasure processes with a more constructive nature. The duplication proceeds
step-by-step among a whole set of possible choices in order to identify those ones that cannot
contain the copies of the term we are interested to duplicate, until it eventually reaches what it
searches. Then, it exploits erasure. Erasing means eroding step-by-step a derivation or a term,
according to the type that drives its construction.

43

3.3.2 Cut-elimination and its cubical complexity
LEM is a type assignment for the linear calculus Λl,´ whose reduction rules depicted in Fig-
ure 3.4(a) limit duplication and erasure to values. These reduction rules are more restrictive
than the cut-elimination steps that we could perform on LEM. Indeed, once replaced “!” for “´”
and forgetting the term annotations, the cut-elimination of LEM would correspond essentially to
the one of IMELL2 (see Section 2.2.2). So, for example, in the following derivation of LEM:

...
y : ´A, z : ´1 ` yz : 1

p
y : ´A, z : ´1 ` yz : ´1

...
Γ, x1 : ´1, x2 : ´1 `M : τ

...
` I : 1

c
Γ, x : ´1 ` copyI

1 x as y, z in M : τ
cut

Γ, y : ´A, z : ´1 ` copyI
1 yz as y, z in M : τ

(3.16)

the typical cut-elimination step moves the cut upward. But this would duplicate the open term
yz, erroneously yielding a non-linear term. Hence, at the proof-theoretical level, cut-elimination
steps exist that cannot correspond to any reduction on terms. In order to circumvent the here
above misalignment, we proceed as follows:

• We define the lazy cut-elimination steps, ruling out any attempt to eliminate an instance
of cut like (3.16). The drawback of this approach is that we may run into deadlocks, i.e.
into instances of cut that cannot be eliminated.

• We define a relevant class of types, called lazy, and we show that a lazy cut-elimination
strategy exists that is able to eliminates all the cut rules that may occur in a derivation of
a lazy type. The cost of the elimination is cubical (Theorem 29).

Definition 24 (Cut rules of LEM). Let (X,Y) identify an instance:

...
X

Γ ` N : σ

...
Y

∆, x : σ `M : τ
cut

Γ,∆ `M [N/x] : τ

(3.17)

of the rule cut that occurs in a given derivation D of LEM, where X and Y are two of the rules
in Figure 3.5. Axiom cuts involve ax, and are of the form (X, ax) or (ax, Y), for some X and Y .
Exponential cuts are (p,d), (p,w), and (p,c). Principal cuts are ((R,(L), (∀R,∀L) and every
exponential cut. Symmetric cuts contain axiom and principal cuts. Every symmetric cut that
is not exponential is multiplicative. Commuting cuts are all the remaining instances of cut, not
mentioned here above, (p, p) included, for example.

A lazy cut is every instance of the cut rule (3.17) which is both exponential and such that N
is a value.

A deadlock is every instance of the cut rule (3.17) which is both exponential and such that
Γ 6= ∅. Otherwise, it is safe.

The lazy cut-elimination rules that we introduce here below are the standard ones, but
restricted to avoid the elimination of non-lazy instances of the exponential cuts (p, d), (p, w) and
(p, c).

Definition 25 (Lazy cut-elimination rules). Figure 3.6 introduces the lazy cut-elimination rules
for the principal cuts. The elimination rules for commuting and axiom cuts are standard, so we
omit them all from Figure 3.6; the (possibly) less obvious commuting ones can be recovered from
the reductions on terms in Figure 3.4(b). We remark that the elimination of the principal cuts

44

(∀R,∀L) and (p, d) does not modify the subject of their concluding judgment. So, we call them
insignificant as every other cut-elimination rule non influencing their concluding subject. Given
a derivation D, we write D D′ if D rewrites to some D by a lazy cut-elimination rule.

The introduction of the lazy cut-elimination rules is a way of preventing the erasure and the
duplication of terms that are not values, and hence to restore a correspondence between cut-
elimination and term reduction. However, we can run into derivations containing exponential
cuts that will never turn into lazy cuts, like the deadlock in (3.16). The solution we adopt is to
identify a set of judgments whose derivations can be rewritten into cut-free ones by a sequence
of lazy cut-elimination steps.

Definition 26 (Lazy types, lazy judgments and lazy derivations). We say that σ is a lazy type
if it contains no negative occurrences of ∀. Also, we say that x1 : σ1, . . . , xn : σn ` M : τ is
a lazy judgment if τ is a lazy type and σ1, . . . , σn contain no positive occurrences of ∀. Last,
D / Γ `M : τ is called a lazy derivation if Γ `M : τ is a lazy judgment.

Lemma 25 and 26 here below, as well as Definition 27 and 28, are the last preliminaries to
show the relevance of lazy cuts that occur in lazy derivations.

Lemma 25.

(1) Every type of the form ´σ is closed and lazy.

(2) Every closed type has at least a positive quantification.

(3) Let R be any instance of ∀L, d, w, c, and p, the latter with a non empty context. The
conclusion of R is not lazy.

(4) Let R be any instance of ax, (R, (L, ∀R, and p, the latter with an empty context. If
the conclusion of R is lazy, then, every premise of R is lazy.

(5) If D is a cut-free and lazy derivation of LEM, then all its judgments are lazy and no
occurrence of ∀L, d, w, c, and p, the latter with a non empty context, can exist in D.

Proof. Point (1) holds by Definition 21. Point (2) is by a structural induction on types. Con-
cerning point (3), the conclusions of d, w, c, and p contain ´σ. This is a closed type, hence, by
point (2), such conclusions are not lazy judgments. Moreover, ∀L introduces a positive occur-
rence of ∀ in the context of its conclusion, so that the latter cannot be a lazy judgment. Point (4)
is a case analysis on every listed inference rule. As for point (5), we can proceed by structural
induction on D. By definition, the conclusion of D is a lazy judgment. Point (3) excludes that
one among ∀L, d, w, c, and p (with a non empty context) may be the last rule of D. So, only
one among ax, (R, (L, ∀R, and p (with an empty context) can be the concluding rule, say
R, of D. Point (4) implies that all premises of R are lazy. Hence, we can apply the inductive
hypothesis and conclude.

The size of a derivation is usually defined as the number of rules of that derivation. For ease
of presentation, we shall define a slightly different notion of size for derivations in LEM, which
does not affect the fundamental result of this subsection (Theorem 29):

Definition 27 (Size of a derivation). The size |D| of a derivation D in LEM is defined by
induction:

• If D is ax then |D| = 1;

• if D is a derivation D′ that concludes by a rule with a single premise, then |D| = |D′|+ 1;

45

D
Γ
,x

:
σ
`
M

:
A

(
R

Γ
`
λ
x
.M

:
σ
(

A

D
′

∆
`
N

:
σ

D
′′

Σ
,z

:
A
`
P

:
τ
(

L
∆
,Σ
,y

:
σ
(

A
`
P

[y
N
/
z
]

:
τ
cu
t

Γ
,∆
,Σ
`
P

[(λ
x
.M

)N
/
z
]

:
τ

D
′

∆
`
N

:
σ

D
Γ
,x

:
σ
`
M

:
A

cu
t

Γ
,∆
`
M

[N
/
x

]
:
A

D
′′

Σ
,z

:
A
`
P

:
τ
cu
t

Γ
,∆
,Σ
`
P

[M
[N
/x

]/z
]

:
τ

D
Γ
`
M

:
A
〈γ
/α〉

∀
R

Γ
`
M

:∀
α
.A

D
′

∆
,x

:
A
〈B
/
α〉`

N
:
τ
∀
L

∆
,x

:∀
α
.A
`
N

:
τ
cu
t

Γ
,∆
`
N

[M
/
x

]
:
τ

D
〈B
/
α〉

Γ
`
M

:
A
〈B
/
α〉

D
′

∆
,x

:
A
〈B
/α〉`

N
:
τ
cu
t

Γ
,∆
`
N

[M
/x

]
:
τ

D
`
V

:
σ

p
`
V

:´σ
D
′

Γ
,x

:
σ
`
M

:
τ

d
Γ
,y

:´
σ
`
M

[y
/
x

]
:
τ
cu
t

Γ
`
M

[V
/
x

]
:
τ

D

`
V

:
σ

D
′

Γ
,x

:
σ
`
M

:
τ
cu
t

Γ
`
M

[V
/
x

]
:
τ

D
`
V

:
σ

p
`
V

:´σ
D
′

∆
`
M

:
τ

w
∆
,x

:´σ
`
d
i
s
c
a
r
d
σ
x
i
n
M

:
τ
cu
t

∆
`
d
i
s
c
a
r
d
σ
V

i
n
M

:
τ

D
′

∆
`
M

:
τ

D
`
V

:
σ

p
`
V

:´σ

D
1

∆
,y

:´σ
,z

:´σ
`
M

:
τ

D
2

`
V
′

:
σ

c
∆
,x

:´σ
`
c
o
p
y
V
′

σ
x
a
s
y
,z

i
n
M

:
τ
cu
t

∆
`
c
o
p
y
V
′

σ
V

a
s
y
,z

i
n
M

:
τ

D

`
V

:
σ

p
`
V

:´σ

D
`
V

:
σ

p
`
V

:´σ
D

1

∆
,y

:´
σ
,z

:´σ
`
M

:
τ
cu
t

∆
,z

:´
σ
`
M

[V
/y

]
:
τ
cu
t

∆
`
M

[V
/y
,V
/z

]
:
τ

F
igure

3.6:
Lazy

cut-elim
ination

rules
for

the
principalcuts

((
R
,(

L
),

(∀L
,∀R

),
(p
,d

),
(p
,w

),and
(p
,c).

46

• if D composes two derivations D′ and D′′ by a rule with two premises, but different from
c, then |D| = |D′|+ |D′′|+ 1;

• if D composes two derivations D′ and D′′ by the rule c, then |D| = |D′|+ |D′′|+ 3.

Lemma 26. Let D / x1 : σ1, . . . , xn : σn `M : σ be a cut-free and lazy derivation:

(1) M is a linear λ-term in normal form;

(2) |M | ≤
∑n
i=1 |σi|+ |σ|;

(3) |D| = |M |+ k, where k is the number of ∀ and ´ occurring in σ1, . . . , σn, σ;

(4) if D′ / x1 : σ1, . . . , xn : σn ` N : σ is a lazy and cut-free derivation, then |N | ≤ |M | implies
|D′| ≤ |D|;

(5) the set of values with lazy type σ is finite.

Proof. The assumptions on D allow to apply Lemma 25.(5) which implies that every judgment
in D is lazy and free from ∀L, d, w, c and p (with a non empty context). Hence, we can prove
points (1)-(3) by induction on the structure of D. Point (4) is a corollary of point (3). Point (5)
is a corollary of point (2).

Definition 28 (Height of an inference rule). Let D / Γ ` M : σ be a derivation and R a rule
instance in it. The height of R, written h(R), is the number of rule instances from the conclusion
Γ ` M : σ of D upward to the conclusion of R. The height of D, written h(D), is the largest
h(R) among its rule instances.

Lemma 27 and 28 assure that we can eliminate lazy cuts from a lazy derivation.

Lemma 27 (Existence of a safe cut). Let D be a lazy derivation with only exponential cuts in
it. At least one of those cuts is safe.

Proof. Let Γ ` M : τ be the conclusion of D. By contradiction, let us suppose that every
occurrence of exponential cut in D is a deadlock. At least one of them, say Cm, has minimal
height h(Cm), i.e. no other cut occurs in the sequence of rule instances, say R1, . . . Rn, from the
conclusion of Cm down to the one of D. Since Cm is a deadlock, its leftmost premise has form
∆ ` N : ´σ, where ∆ 6= ∅. By Proposition 24, ∆ is strictly exponential and hence ∆ ` N : ´σ is
a non lazy judgment by Lemma 25.(1) and Lemma 25.(2). Lemma 25.(3) and the contraposition
of Lemma 25.(4) imply that the non lazy judgment in Cm can only be transformed to a non lazy
judgment by every Ri, with 1 ≤ i ≤ n, letting the conclusion of D non lazy, so contradicting the
assumption. Hence, Cm must be safe.

Lemma 28 (Eliminating a lazy cut). Let D be a lazy derivation with only exponential cuts in
it. A lazy derivation D∗ exists such that both D D∗, by reducing a lazy cut, and |D∗| < |D|.

Proof. Lemma 27 implies that D contains at least an exponential cut which is safe. Let us take
(p,X) with maximal height h((p,X)) among those safe instances of cut. So, if (p,X) has form:

D′
` N : σ p
` N : ´σ

...
X

∆, x : ´σ `M : τ
cut

∆ `M [N/x] : τ

(3.18)

47

then D′ is a lazy derivation because ´σ is a lazy type by Lemma 25.(1). Since D′ is lazy and
can only contain exponential cuts, by Lemma 27 and by maximality of h((p,X)), it is forcefully
cut-free. So, by Lemma 26.(1), we have that N is a value, i.e. (p,X) is a lazy cut and we can
reduce it to obtain D∗. If X in (3.18) is d or w, then it is simple to show that |D∗| < |D|. Let
X be c. Then, (3.18) is:

D′
` V : σ p
` V : ´σ

D′′
∆, y : ´σ, z : ´σ `M ′ : τ

D′′′
` V ′ : σ

c
∆, x : ´σ ` copyV ′σ x as y, z in M ′ : τ

cut
∆ ` copyV ′σ V as y, z in M ′ : τ

(3.19)

with D′′′ lazy and cut-free for the same reasons as D′ is. So, (3.19) can reduce to:

D′
` V : σ p
` V : ´σ

D′
` V : σ p
` V : ´σ

D′′
∆, y : ´σ, z : ´σ `M ′ : τ

cut
∆, z : ´σ `M ′[V/y] : τ

cut
∆ `M ′[V/y, V/z] : τ

(3.20)

By Lemma 26.(5), we can safely assume that V ′ is a value with largest size among values of type
σ. By Lemma 26.(4), from |V | ≤ |V ′| we have |D′| ≤ |D′′′|. By applying Definition 27 to (3.19)
and (3.20), we have |D∗| < |D|.

Definition 29 (Lazy cut-elimination strategy). Let D be a lazy derivation of LEM. We define
a round on D as follows:

{1} Eliminate all the commuting instances of cut.

{2} If any instance of cut remains, it is necessarily symmetric. Reduce a multiplicative cut, if
any. Otherwise, reduce a lazy exponential cut, if any.

The lazy cut-elimination strategy iterates rounds, starting from D, whenever instances of cut
exist in the obtained derivations.

Theorem 29 (Lazy cut-elimination has a cubic bound). Let D be a lazy derivation. The lazy
cut-elimination reduces D to a cut-free D∗ in O(|D|3) steps.

Proof. Let H(D) be the sum of the heights h(D′) of all subderivations D′ of D whose conclusion
is an instance of cut. We proceed by induction on the lexicographically order of the pairs
(|D|, H(D)). To show that the lazy cut-elimination strategy in Definition 29 terminates, we start
by applying a round to D, using step {1}. Every commuting cut-elimination step just moves an
instance of cut upward, strictly decreasing H(D) and leaving |D| unaltered. Let us continue by
applying step {2} of the round. As usual, |D| shrinks when eliminating a multiplicative cut. If
only exponential instances of cut remain, by Lemma 28 we can rewrite D to D′ by reducing a
lazy exponential cut in such a way that |D′| < |D|. Therefore, the lazy cut-elimination strategy
terminates with a cut-free derivation D∗.

We now exhibit a bound on the number of cut-elimination steps from D to D∗. Generally
speaking, we can represent a lazy strategy as:

D = D0 −→︸︷︷︸
cc0

D′0 D1 · · · −→︸︷︷︸
cci

D′i Di+1 −→︸︷︷︸
cci+1

· · · D′n−1 Dn −→︸︷︷︸
ccn

D′n = D∗ (3.21)

48

where every ccj denotes the number of commuting cuts applied from derivation Dj to derivation
D′j , for every 0 ≤ j ≤ n. A bound on every ccj is |Dj |2 because every instance of rule in Dj can,
in principle, be commuted with every other. The first part of the proof implies |Dj | = |D′j |, for
every 0 ≤ j ≤ n. Lemma 28 implies |D′j | > |Dj+1|, for every 0 ≤ j ≤ n− 1. So, n ≤ |D| and the
total number of cut-elimination steps in (3.21) is O(|D| · |D|2).

Remark 6. The cubic bound on the lazy strategy keeps holding also when it is applied to non-
lazy derivations. Of course, in that case, deadlocks may remain in the final derivation where no
instance of cut can be further eliminated.

3.3.3 Subject reduction

The proof of the Subject reduction requires some well-known preliminary results.

Lemma 30 (Substitution). If Γ `M : τ then Γ[A/α] `M : τ [A/α], for every linear type A.

Proof. Straightforward.

Lemma 31 (Generation).

(1) If D / Γ ` λx.M : τ , then τ = ´n∀~α.(σ (A), where ´n , ´ n. . .´ and ~α = α1, . . . , αm, for
some n ≥ 0 and m ≥ 0.

(2) If D /Γ `M : ´σ, then a derivation D′ exists which is D with some rule permuted in order
to get an instance of p as last rule of D′.

(3) If D / Γ ` λx.M : ∀α.A, then a derivation D′ exists which is D with some rule permuted
in order to obtain an instance of ∀R as last rule of D′.

(4) If D / Γ ` λx.P : σ(B, then a derivation D′ exists which is D with some rule permuted
in order to obtain an instance of (R as last rule of D′.

(5) If D /∆, x : ´σ ` P [xN/y] : τ , then D contains an application of d that introduces x : ´σ.
(6) If D / ∆, x : ∀α.A ` P [xN/y] : τ , then D contains an application of ∀L that introduces

x : ∀α.A.

(7) If D /∆, x : σ(B ` P [xN/y] : τ , then D contains an application of (L that introduces
x : σ(B.

(8) If D /∆, x : ´σ ` discardσ x in P : τ , then D contains an application of w that introduces
x : ´σ.

(9) If D / ∆, x : ´σ ` copyVσ x as x1, x2 in P : τ , then D contains an application of c that
introduces x : ´σ.

Proof. We can adapt the proof by Gaboardi and Ronchi in [40] to LEM because the types in
Definition 21 are a subset of Gaboardi and Ronchi’s essential types. In particular, point(2) relies
on Proposition 24.

Theorem 32 (Subject reduction). If Γ `M : τ and M →M ′, then Γ `M ′ : τ .

Proof. We proceed by structural induction on D and case analysis of M →M ′. The crucial case
is when (λx.P)Q exists in M and D contains:

49

D′ /∆ ` λx.P : σ D′′ / Σ, y : σ ` N [yQ/z] : τ
cutD /∆,Σ ` N [(λx.P)Q/z] : τ

Lemma 68.(1) implies that σ = ´n∀~α.(σ1 (C), where ´n , ´ n. . .´ and ~α = α1, . . . , αm, for some
n ≥ 0 and m ≥ 0. Lemma 68.(5)-(7) imply that D′′ has form:

...
Σ′′1 ` Q′′ : σ′1

...
Σ′′2 , z : C ′ ` N ′′ : τ ′′

(L
Σ′′1 ,Σ

′′
2 , y
′′′ : σ′1 (C ′ ` N ′′[y′′′Q′′/z] : τ ′′

... γ′′

Σ′, y′′ : ∀~α.(σ1 (C) ` N ′[y′′Q′/z] : τ ′
d

Σ′, y′ : ´∀~α.(σ1 (C) ` N ′[y′Q′/z] : τ ′

... γ′

Σ, y : ´n∀~α.(σ1 (C) ` N [yQ/z] : τ

(3.22)

where γ′ and γ′′ are sequences of applications of inference rules, σ′1 = σ1[A1/α1, . . . , Am/αm]
and C ′ = C[A1/α1, . . . , Am/αm], for some Σ′, Σ′′1 ,Σ′′2 ,y′,y′′,y′′′, N ′,N ′′,Q′,Q′′, τ ′,τ ′′, A1, . . . , Am.
Lemma 68.(2)-(4) imply that, permuting some of its rules, D′ can be reorganized as:

...
∆, x : σ1 ` P : C

(R
∆ ` λx.P : σ1 (C

∀R
∆ ` λx.P : ∀~α.(σ1 (C)

p
∆ ` λx.P : ´n∀~α.(σ1 (C)

where the concluding instances of p are necessary if n > 0 and can be applied since ∆ is strictly
exponential as a consequence of Proposition 24. Moreover, Lemma 30 assures that a derivation
of ∆, x : σ′1 ` P : C ′ exists because α1, . . . , αm are not free in ∆. Therefore:

...
Σ′′1 ` Q′′ : σ′1

...
∆, x : σ′1 ` P : C ′

cut
∆,Σ′′1 ` P [Q′′/x] : C ′

...
Σ′′2 , z : C ′ ` N ′′ : τ ′′

cut
∆,Σ′′1 ,Σ

′′
2 ` N ′′[P [Q′′/x]/z] : τ ′′

... γ′, γ′′

∆,Σ ` N [P [Q/x]/z] : τ

A similar proof exists, which relies on Lemma 68.(8), or Lemma 68.(9), when reducing discardσ
V in M , or copyV

′

σ V as y, z in M . All the remaining cases concerning the commuting conver-
sions are straightforward.

3.3.4 Translation of LEM into IMLL2 and exponential compression

The system LEM provides a logical status to copying and erasing operations that exist in IMLL2.
In what follows, we show that a translation (_)• from LEM into IMLL2 exists that “unpacks”
both the constructs discardσ and copyVσ by turning them into, respectively, an eraser and a

50

duplicator of a ground type. Then, we show that the reduction steps in Figure 3.4(a) and the
commuting conversions in Figure 3.4(b) can be simulated by the βη-reduction of the linear λ-
calculus, as long as we restrict to terms of Λl,´ typable in LEM. Last, we discuss the complexity
of the translation, and we prove that every term typable in LEM is mapped to a linear λ-term
whose size is exponential in the one of the original term.

We start with the following preliminary lemma:

Lemma 33. Let V be a value and σ a type of LEM:

(1) if M ∈ Λl,´ is a term typable in LEM:

• every subterm of M of the form discardσ P in Q is such that σ is closed and free
form negative occurrences of ∀, and P an inhabitant of σ;

• every subterm of M of the form copyVσ P as x1, x2 in Q is such that σ is closed and
free form negative occurrences of ∀, and both V and P are inhabitants of σ.

(2) if σ′ is σ in which every occurrence of ´ has been removed, then V has type σ if and only
if V has type σ′;

Proof. Straightforward.

The translation from LEM to IMLL2 can be defined as follows:

Definition 30 (From LEM to IMLL2). The map (_)• : LEM −→ IMLL2 translates a derivation
D / Γ `LEM M : τ into a derivation D• / Γ• `IMLL2

M• : τ•:

• for all types σ ∈ Θ´, it is defined by:

α• , α

(τ (A)• , τ•(A•

(∀α.A)• , ∀α.A•

(´τ)• , τ•

• for all contexts Γ = x1 : σ1, . . . , xn : σn, we set Γ• , x1 : σ•1 , . . . , xn : σ•n;

• for all typable terms M ∈ Λl,´, it is defined by:

x• , x

(λx.P)• , λx.P •

(PQ)• , P •Q•

(discardσ P in Q)• , let Eσ• P
• be I in Q•

(copyVσ P as x1, x2 in Q)• , let DV
•

σ• P
• be x1, x2 in Q•

where Theorem 9 and Theorem 10 assure the existence of the erasure Eσ• and the duplicator
DV
•

σ• of the type σ• (with the notation as in Remark 4), because by Lemma 33.(1):

– σ is closed and free from negative occurrences of ∀, so that σ• is a ground type,
– V • = V is a value that inhabits σ, and hence σ•, by Lemma 33.(2);

• the definition of (_)• extends to any derivation D / Γ `M : σ of LEM in the obvious way,
following the structure of M•. Figure 3.7 collects the most interesting cases.

51

D

x
1

:´σ
1 ,...,x

n
:´σ

n
`
M

:
σ

p
x

1
:´σ

1 ,...,x
n

:´
σ
n
`
M

:´σ
•

,

(
D

x
1

:´σ
1 ,...,x

n
:´σ

n
`
M

:
σ)

•

D

Γ
,x

:
σ
`
M

:
τ

d
Γ
,y

:´σ
`
M

[y
/x

]
:
τ

•

,
ax

y
:
σ
•
`
y

:
σ
•

(
D

Γ
,x

:
σ
`
M

:
τ)
•cu

t
Γ
•,y

:
σ
•
`
M
•[y
/
x

]
:
τ
•

D

Γ
`
M

:
τ

w
Γ
,x

:´σ
`
d
i
s
c
a
r
d
σ
x
i
n
M

:
τ

•

,
...

x
:
σ
•
`
E
σ
•
x

:
1

(
D

Γ
`
M

:
τ)
•

1L
Γ
•,y

:
1
`
l
e
t
y
b
e

I
i
n
M
•

:
τ
•
cu
t

Γ
•,x

:
σ
•
`
l
e
t
E
σ
•
x
b
e

I
i
n
M
•

:
τ
•

D

1

Γ
,x

1
:´σ

,x
2

:´
σ
`
M

:
τ

D
2

`
V

:
σ

c
Γ
,x

:´
σ
`
c
o
p
y
Vσ
x
a
s
x

1 ,x
2
i
n
M

:
τ

•

,

(
D

2

`
V

:
σ)
•

...
x

:
σ
•
`
D
V
•

σ
•
x

:
σ
•⊗

σ
•

(
D

1

Γ
,x

1
:´σ

,x
2

:´
σ
`
M

:
τ)
•

⊗
L

Γ
•,y

:
σ
•⊗

σ
•
`
l
e
t
y
b
e
x

1 ,x
2
i
n
M
•

:
τ
•
cu
t

Γ
•,x

:
σ
•
`
l
e
t
D
V
•

σ
•
x
b
e
x

1 ,x
2
i
n
M
•

:
τ
•

F
igure

3.7:
T
he

translation
of

the
rules

p,
d,
w

and
c.

52

Before stating the simulation theorem we prove a substitution lemma:

Lemma 34. For all terms M,N ∈ Λl,´ typable in LEM, M•[N•/x] = (M [N/x])•.

Proof. The proof is by structural induction on M . If M is x, then x•[N•/x] = x[N•/x] = N• =
(x[N/x])•. If M is λy.P then, by using the induction hypothesis:

(λy.P)•[N•/x] = (λy.P •)[N•/x] = λy.(P •[N•/x]) = λy.(P [N/x])•

= (λy.(P [N/x]))• = ((λy.P)[N/x])•.

If M is PQ, then either x ∈ FV(P) or x ∈ FV(Q). We consider the former case, the latter being
similar. By using the induction hypothesis: (PQ)•[N•/x] = P •[N•/x]Q• = (P [N/x])•Q• =
(P [N/x]Q)• = (PQ)[N/x]•. If M is discardσ P in Q, then either x ∈ P or x ∈ Q. We consider
the former case. By using the induction hypothesis:

(discardσ P in Q)•[N•/x] = let Eσ• P
•[N•/x] be I in Q•

= let Eσ• (P [N/x])• be I in Q•

= (discardσ P [N/x] in Q)•.

If M is copyVσ P as x1, x2 in Q then either x ∈ FV(P) or x ∈ FV(Q). We consider the former
case. By using the induction hypothesis:

(copyVσ P as x1, x2 in Q)•[N•/x] = let DV
•

σ• P
•[N•/x] be x1, x2 in Q•

= let DV
•

σ• (P [N/x])• be x1, x2 in Q•

= (copyVσ P [N/x] as x1, x2 in Q)•.

We now show that every reduction on terms typable in LEM can be simulated in the linear
λ-calculus by means of the βη-reduction. Since by Theorem 3 every linear λ-term has type in
IMLL, and hence in IMLL2, this result can be seen as a simulation property relating LEM and
IMLL2.

Theorem 35 (Simulation for LEM). Let D / Γ ` M : σ be a derivation in LEM. If M1 →∗ M2

then M•1 →∗βη M•2 :

M1 M2

M•1 M•2

∗

∗
βη

Proof. By Theorem 32, it suffices to show that M1 → M2 implies M•1 →∗βη M•2 . We proceed
by case analysis and we consider the most interesting cases. Suppose that M1 is (λx.P)Q and
M2 = P [Q/x]. Lemma 34 implies ((λy.P)Q)• = (λy.P •)Q• →β P

•[Q•/x] = (P [Q/x])•. If M1 is
discardσ V in N andM2 is N , then V is a value of type σ by Lemma 33.(1), hence V • = V is a
value of type σ• by Lemma 33.(2). Moreover, Eσ• is an eraser of σ• by Definition 30. Therefore:

(discardσ V in N)• , let Eσ• V
• be I in N• →∗β N•

by Theorem 9. If M1 is copyV
′

σ V as x1, x2 in N and M2 is N [V/x1, V/x2], then V is a value
of type σ by Lemma 33.(1), hence V • = V is a value of type σ• by Lemma 33.(2). Moreover,
D

(V ′)•

σ• is a duplicator of σ• by Definition 30. Therefore:

(copyV
′

σ V as x1, x2 in N)• , let D
(V ′)•

σ• V • be x1, x2 in N•

53

→∗βη let 〈V •, V •〉 be x1, x2 in N• Thm. 10

→β N
•[V •/x1, V

•/x2]

, (N•[V •/x1])[V •/x2]

= ((N [V/x1])[V/x2])• Lem. 34

, (N [V/x1, V/x2])•.

We conclude by estimating the impact of the translation in Definition 30 on the size of terms,
and hence the cost of “unpacking” the constructs discardσ and copyVσ . First, we study the
complexity of erasers EA and duplicators DVA with respect to A−, where (_)− is a forgetful map
(erasing all instances of ∀ in a type) we introduced in Definition 12 (Section 3.2).

Lemma 36 (Size of EA and DVA). For every ground type A:

(1) |EA| ∈ O(|A−|).

(2) If V is a value of type A, then |DVA | ∈ O(2|A
−|2).

Proof. Point (1) is straightforward by looking at the proof of Theorem 9. Concerning point (2),
from Section 3.2 we know that DVA is decsA ◦ encsA ◦ subsA, where s = O(|A−| · log |A−|). The
components of DVA with a size not linear in |A−| are decsA and encsA. The λ-term decsA in
Section 3.2.3 nests occurrences of if-then-else each containing 2s pairs of normal inhabitants
of A, each one of size bounded by |A−|, by Lemma 16. Similarly, encsA alternates instances of
λ-terms abss and apps which, again, nest occurrences of if-then-else each one with 2s instances
of boolean strings of size s. Therefore, the overall complexity of DVA is O(s · 2s) = O(2|A

−|2).

Theorem 37 (Exponential compression for LEM). Let D / Γ ` M : σ be a derivation in LEM.
Then, |M•| = O(2|M |

k

), for some k ≥ 1.

Proof. The proof is by structural induction on M . The only interesting case is when M is
copyVσ P as x1, x2 in Q, so that:

(copyVσ P as x1, x2 in Q)• = let DV
•

σ• P
• be x1, x2 in Q•

where σ• is a ground type of IMLL2 with inhabitant V • = V , by Definition 30. By Lemma 16
it is safe to assume that V is a value with largest size among values of type σ•, so that V is
a η-long normal form. On the one hand, by induction hypothesis, we obtain |P •| = O(2|P |

k′

)

and |Q•| = O(2|Q|
k′′

), for some k′, k′′ ≥ 1. On the other hand, by applying both Lemma 36 and
Lemma 16, we have |DVσ• | = O(2|(σ

•)−|2) = O(2(2·|V |)2). Therefore, there exists k ≥ 1 such that
|M•| = O(2(|V |+|P |+|Q|+1)k) = O(2|M |

k

).

3.4 The expressiveness of LEM and applications
Theorem 35 says that LEM is not “algorithmically” more expressive than IMLL2. Nonetheless,
terms with type in LEM, and their evaluations, exponentially compress the corresponding linear
λ-terms and evaluations in IMLL2 (Theorem 37). The goal of this section is to explore the benefits
of this compression.

We first represent boolean circuits as terms of LEM, showing a simulation result (Proposi-
tion 38). The encoding is inspired by Mairson and Terui [65]. Other encodings of the boolean

54

circuits have been proposed in Terui [89], Mogbil and Rahli [73] and Aubert [8] in the framework
of the unbounded proof-nets for MLL, an efficient language able to express n-ary tensor products
by single nodes and to characterize parallel computational complexity classes such as NC, AC,
and P/poly. As opposed to all such previous approaches, our encoding exploits the use of copy
and discard to directly express the fan-out nodes, allowing a more compact and modular rep-
resentation of circuits. In particular, as compared to [89, 73, 8], our encoding is able to get rid
of the garbage that accumulates in the course of the simulation.

Then, we present an encoding in LEM of the natural numbers similar to the standard Church
encoding in Linear Logic, and we show that both the successor and the addition are definable
(Proposition 40), while the “zero-test”, the predecessor and the subtraction don’t seem to be
representable.

3.4.1 Boolean circuits in LEM

We start by briefly recalling the basics of boolean circuits from Vollmer [94].

Definition 31 (Boolean circuits). A boolean circuit C is a finite, directed and acyclic graph
with n input nodes, m output nodes, internal nodes and fan-out nodes as in Figure 3.8(a). The
incoming (resp. outgoing) edges of a node are premises (resp. conclusions). The fan-in of an
internal node is the number of its premises. Labels for the n input nodes of C are x1, . . . , xn and
those ones for the m outputs are y1, . . . , ym. Each internal node with fan-in n ≥ 0 has an n-ary
boolean function opn as its label, provided that if n = 0, then opn is a boolean constant in {0, 1}.
The fan-out nodes have no label. Input and internal nodes are logical nodes and their conclusions
are logical edges. If ν and ν′ are logical nodes, then ν′ is a successor of ν if a directed path from
ν to ν′ exists which crosses no logical node. The size |C| of C is the number of nodes. Its depth
δ(C) is the length of the longest path from an input node to a output node. A basis B is a set
of boolean functions. A boolean circuit C is over a basis B if the label of every of its internal
nodes belong to B only. The standard unbounded fan-in basis is B1 = {¬, (∧n)n∈N, (∨n)n∈N}.

When representing boolean circuits as terms we label edges by λ-variables, we omit their
orientation, we assume that every fan-out always has a logical edge as premise and we draw
non-logical edges, i.e. conclusions of fan-out nodes, as thick lines.

Example 10. A 2-bits full-adder is in Figures 3.8(b). It takes two bits x1, x2 and a carrier cin as
inputs. Its outputs are the sum s = (x1⊕x2)⊕cin and the carrier cout = (x1∧x2)∨((x1⊕x2)∧cin),
where ⊕ is the “exclusive or” that we can obtain by the functionally complete functions in B1.

Example 11. The 3-bits majority function maj3(x1, x2, x3) is in Figure 3.8(c). It serially com-
poses three occurrences of the boolean circuit that switches two inputs x1 and x2 in order to
put the greatest on the topmost output and the smallest on the bottommost one, under the
convention that 0 is smaller than 1:

x1

x2

∨

∧
max{x1, x2}

min{x1, x2}

x1

x2

x′1

x′′1

x′2

x′′2

This kind of circuit is the building block of the Switching Networks [12]. So, the 3-bits majority
circuit first sorts its input bits and then checks if the topmost two, i.e. the majority, are both
set to 1. The lowermost output is garbage.

55

opn

. . .n ≥ 0. . .

xi

. . .n ≥ 0. . .

yj

(a) From left, input, internal, fan-out, and output nodes.

x1

x2

x3

⊕

∧

⊕

∧

∨

y1

y2

s

cout

(x1 ⊕ x2)⊕ cin

(x1 ∧ x2) ∨ ((x1 ⊕ x2) ∧ cin)

x1

x2

cin

x′1

x′′1

x′2

x′′2

y′

y′′

z1 z′1

z′′1

z2

z3

(b) The 2-bits full-adder boolean circuit

x1

x2

x3

∨

∧ ∨

∧

∧

∨
∧

y1

y2

m

g

maj3(x1, x2, x3)

min3{x1, x2, x3}

x1 x′1

x′′1

x2
x′2

x′′2

y2

y′′2

y′2

x3
x′3

x′′3

y1 y′1

y′′1

y3
y′3

y′′3

z1

z2

(c) The 3-bits majority boolean circuit

Figure 3.8: Nodes of boolean circuits and some examples.

56

¬ not , λb.λx.λy.byx : B(B

∧0 and0 , λx.λy.〈x, y〉 : B

∧1 and1 , I : B(B

∧2 and2 , λx1.λx2.π1(x1x2 ff) : B(B(B

∧n+2 andn+2 , λx1 . . . xn+1xn+2.and
2 (andn+1 x1 . . . xn+1)xn+2 : B(n+2. . . (B(B

∨0 or0 , λx.λy.〈y, x〉 : B

∨1 or1 , I : B(B

∨2 or2 , λx1.λx2.π1(x1ttx2) : B(B(B

∨n+2 orn+2 , λx1 . . . xn+1xn+2.or
2 (orn+1 x1 . . . xn+1)xn+2 : B(n+2. . . (B(B

fo0 out0 , λx.discardB x in I : ´B(1

fo1 out1 , I : ´B(B

fo2 out2 , λx.copyttB x as x1, x2 in 〈x1, x2〉 : ´B(´B⊗ ´B
fon+2 outn+2 , λx.copyttB x as x1, x2 in 〈outn+1 x1, x2〉 : ´B(´B⊗ n+2. . . ⊗ ´B

Figure 3.9: Encoding of boolean functions and fan-out.

Translating boolean circuits as terms of LEM requires to encode the boolean functions in B1

and the fan-out nodes. Figure 3.9 reports them, where tt and ff encode the boolean values
in (3.2), and π1 is the projection in (3.5). By convention, we shall fix:

1 , tt 0 , ff. (3.23)

Moreover, opn denotes the n-ary boolean function opn, according to Figure 3.9. We shorten
and0, or0, and2, or2, and out2 as 1, 0, and, or, and out, respectively. The encoding of the
binary exclusive or ⊕ is xor.

We recall that boolean circuits are a model of parallel computation, while the λ-calculus
models sequential computations. Mapping the former into the latter requires some technicalities.
The notion of level allows to topologically sort the structure of the boolean circuits in order to
preserve the node dependencies:

Definition 32 (Level). The level l of a logical node ν in a boolean circuit C is:

• 0 if ν has no successors, and

• max{l1, . . . , lk}+ 1 if ν has successors ν1, . . . , νk with levels l1, . . . , lk.

The level of a logical edge is the level of the logical node it is the conclusion of. The level of a
boolean circuit is the greatest level of its logical nodes.

We define a level-by-level translation of unbounded fan-in boolean circuits over B1 into terms
typable in LEM taking inspiration from Schubert [82]:

Definition 33 (From boolean circuits to terms). Let C be a boolean circuit with n inputs and
m outputs. We define the term levellC by induction on l − 1:

57

opn

. . .
z1 zh

xi . . .
yj1 yjkj

xj

Figure 3.10: From left, an internal node and a fan-out node.

• level−1
C , 〈x1, . . . , xn〉, where x1, . . . , xn are the variables labelling the logical edges of

level 0.

• levellC , (λx1 . . . xnxn+1 . . . xm.let (outk1 x1) be y1
1 , . . . , y

1
k1

in . . .

let (outkn xn) be yn1 , . . . , y
n
kn

in levell−1
C)B1 . . . Bm, where:

– x1, . . . , xn, xn+1, . . . , xm are the variables labelling the logical edges of level l;

– for all 1 ≤ j ≤ n, xj is the premise of a fan-out node with conclusions labelled with
yj1, . . . , y

j
kj

(see Figure 3.10);

– for all 1 ≤ i ≤ m, if xi is the variable labeling the conclusion of an internal node
oph with premises labeled by z1, . . . , zh, respectively (see Figure 3.10), then Bi ,
oph z1 . . . zh. If xi is the variable labelling the conclusion of an input node then
Bi , xi.

Last, if the input nodes have conclusions labeled by x1, . . . , xn, respectively, and if C has level l,
then we define λ(C) , λx.let x be x1, . . . , xn in levellC .

Example 12 (2-bits full adder). The level-by-level translation of the boolean circuit C in Fig-
ure 3.8(b) is the following:

level−1
C , 〈s, cout〉

level0
C , (λs.λcout.level

−1
C)(xor z′1 y

′)(or z2 z3)

level1
C , (λz2.λz3.level

0
C)(andx′′1 x

′′
2)(and z′′1 y

′′)

level2
C , (λz1.λcin.let (out z1) be z′1, z

′′
1 in

let (out cin) be y′, y′′ in level1
C)(xorx′1 x

′
2) cin

level3
C , (λx1.λx2.let (outx1) be x′1, x

′′
1 in

let (outx2) be x′2, x
′′
2 in level2

C)x1 x2

where we set λ(C) , λx.letx be x1, x2, cin in level3
C , that reduces to:

λx.letx be x1, x2, cin in (let (outx1) be x′1, x
′′
1 in

let (outx2) be x′2, x
′′
2 in (let (out cin) be y′, y′′ in

let (out (xorx′1 x
′
2)) be z′1, z

′′
2 in 〈xor z′1 y′, or (andx′′1 x

′′
2)(and z′′1 y

′′)〉)).

58

Example 13 (3-bits majority). The level-by-level translation of the boolean circuit C in Fig-
ure 3.8(c) is the following:

level−1
C , 〈m, g〉

level0
C , (λm.λg.level−1

C)(and z1 z2)(and y′′2 x
′′
3)

level1
C , (λz1.λz2.level

0
C)(or y′1 y

′
3)(and y′′1 y

′′
3)

level2
C , (λy1.λy3.let (out y1) be y′1, y

′′
1 in

let (out y3) be y′3, y
′′
3 in level1

C)(orx′1 x
′
2)(or y′2 x

′
3)

level3
C , (λy2.λx3.let (out y2) be y′2, y

′′
2 in

let(outx3) be x′3, x
′′
3 in level2

C)(andx′′1 x
′′
2)x3

level4
C , (λx1.λx2.let (outx1) be x′1, x

′′
1 in

let (outx2) be x′2, x
′′
2 in level3

C)x1 x2

where we set λ(C) , λx.let x be x1, x2, x3 in level4
C , that reduces to:

λx.let x be x1, x2, x3 in let (outx1) be x′1, x
′′
1 in

let (outx2) be x′2, x
′′
2 in (let (outx3) be x′3, x

′′
3 in

let (out (orx′1 x
′
2)) be y′1, y

′′
1 in (let (out (andx′′1 x

′′
2)) be y′2, y

′′
2 in

let (out (or y′2 x
′
3)) be y′3, y

′′
3 in 〈and (or y′1 y

′
3)(and y′′1 y

′′
3), and y′′2 x

′′
3〉)).

The size of the term coding an internal node depends on its fan-in. Likewise, the size of the
term coding a fan-out node depends on the number of conclusions. The size of the circuit bounds
both values. Moreover, by Theorem 32, reducing a typable term yields a typable term. These
observations imply:

Proposition 38 (Simulation of circuit evaluation). Let C be an unbounded fan-in boolean circuit
over B1 with n inputs and m outputs. Then:

• λ(C) has type (´B⊗ n. . .⊗ ´B)((B⊗ m. . .⊗B) in LEM;

• |λ(C)| = O(|C|);

• for all (i1, . . . , in) ∈ {0, 1}n, the evaluation of C on input (i1, . . . , in) outputs the tuple
(i′1, . . . , i

′
m) ∈ {0, 1}m if and only if λ(C) 〈i1, . . . , in〉 →∗ 〈i′1, . . . , i′m〉.

It should not be surprising that the translation cannot preserve the depth of a given circuit.
Indeed, LEM has only binary logical operators, and we are forced to use nested instances of the
construct “let” to access each Ai in the type A1⊗ . . .⊗An. We could preserve the depth by ex-
tending LEM with unbounded tensor products as done, for example, in [89] for the multiplicative
fragment of linear logic MLL.

3.4.2 Numerals in LEM

We present in LEM an encoding of natural numbers quite close to the standard Church encoding.

Definition 34 (´-numerals). The ´-numerals can be defined as the following terms in Λl,´:

0 , λfx.discard1 f inx

1 , λfx.fx

n+ 2 , λfx.copyI
1 f as f1 . . . fn in f1(. . . (fn x) . . .)

(3.24)

59

where copyI
1 f0 as f1 . . . fn in M stands for:

copyI
1 f0 as f1, f

′
2 in (copyI

1 f
′
2 as f2, f

′
3 in . . . (copy

I
1 f
′
n−1 as fn−1, fn inM) . . .).

We define int´ , ´1(1 as the type of ´-numerals.

The following statement holds:

Proposition 39. For all n ∈ N, `LEM n : int´.
In order to identify terms that represent the same natural number, we take ´-numerals up to

the following equivalences:

f(copyI
1 f
′ as g, h inM) ∼ copyI

1 f
′ as g, h in f M. (3.25)

copyI
1 f as f1, f2 in copyI

1 f1 as f3, f4 inM ∼ copyI
1 f as f3, f1 in copyI

1 f1 as f4, f2 inM. (3.26)

Remark 7. Let us compare int´ with the type int of the Church numerals in Linear Logic:

int , ∀α.(!(α(α)((α(α)) int´ , ´(∀α.(α(α))(∀α.(α(α).

In the former the universal quantification is in positive position, while in the latter it occurs
on both sides of the main implication, because the modality ´ applies only to ground types,
which are closed. We observe that the lack of an external quantifier in int´ limits the use of the
´-numerals as iterators.

Recall that, by the Subject reduction property (Theorem 32), typability is preserved under
reduction for terms in Λl,´. The following definition adapts to LEM the standard notion of
representable function over N for type systems:

Definition 35 (Representable function). We say that a function f : Nn → N is representable in
LEM if there exists a term F ∈ Λl,´ with ` F : int´(n. . .(int´(int´ such that:

Fn1 . . . nk →∗ f(n1, . . . , nk)

for all n1, . . . , nk ∈ N.

We now show that the successor and the addition are representable in LEM. By pushing
further the analogy with the Church encoding, we define:

S , λnfx.copyI
1 f as f1, f2 in f1(nf2x) : int´(int´

A , λmnfx.copyI
1 f as f1, f2 inmf1(nf2x) : int´(int´(int´.

It is easy to check that:

∀n,m ∈ N Sn→∗ n+ 1 Amn→∗ m+ n.

We consider some examples here below:

Example 14. We show that S 2→∗ 3:

S 2 , (λnfx.copyI
1 f as f1, f2 in f1(nf2x))(λgy.copyI

1 g as g1, g2 in g1(g2 y))

→ λfx.copyI
1 f as f1, f2 in f1((λgy.copyI

1 g as g1, g2 in g1(g2 y))f2x)

→ λfx.copyI
1 f as f1, f2 in f1((λy.copyI

1 f2 as g1, g2 in g1(g2 y))x)

→ λfx.copyI
1 f as f1, f2 in f1(copyI

1 f2 as g1, g2 in g1(g2 x))

= λfx.copyI
1 f as f1, f2 in (copyI

1 f2 as g1, g2 in f1(g1(g2 x))) , 3. by (3.25)

60

Example 15. We show that A 2 2→∗ 4:

A 2 2 , (λmnfx.copyI
1 f as f1, f2 inmf1(nf2x)) 2 2

→ (λnfx.copyI
1 f as f1, f2 in 2f1(nf2x)) 2

→ λfx.copyI
1 f as f1, f2 in 2f1(2f2x)

= λfx.copyI
1 f as f1, f2 in 2f1((λgy.copyI

1 g as g3, g4 in g3(g4 y))f2x)

→∗ λfx.copyI
1 f as f1, f2 in 2f1(copyI

1 f2 as g3, g4 in g3(g4 x))

= λfx.copyI
1 f as f1, f2 in

((λgy.copyI
1 g as g1, g2 in g1(g2 y))f1(copyI

1 f2 as g3, g4 in g3(g4 x))

→∗ λfx.copyI
1 f as f1, f2 in

(copyI
1 f1 as g1, g2 in g1(g2 (copyI

1 f2 as g3, g4 in g3(g4 x))))

= λfx.copyI
1 f as f1, f2 in

(copyI
1 f1 as g1, g2 in (copyI

1 f2 as g3, g4 in g1(g2(g3(g4 x)))) by (3.25)

= λfx.copyI
1 f as g1, f1 in

(copyI
1 f1 as g2, f2 in (copyI

1 f2 as g3, g4 in g1(g2(g3(g4 x)))) , 4. by (3.26)

To sum up, we have:

Proposition 40. The successor and the addition functions are representable in LEM.

One can hardly prove that the “zero-test”, the predecessor and the subtraction are repre-
sentable in LEM. Consider for example the predecessor for int introduced by Roversi [78]:

P , λnsz.n S[s]B[z] (Predecessor)

S[M] , λp.let p be l, r in 〈M, lr〉 (Step function)

B[N] , 〈I, N〉 (Base function)

Giving a type to P requires to substitute (α(α)⊗α for α in int, as suggested by the application
of n : int to S[s]. The position of the universal quantifiers in int´ forbids this operation, as
already discussed in Remark 7. Otherwise, we could iterate functions, contradicting the cubic
bound on the cut-elimination (Theorem 29).

To sum up, we have outlined the computational content of LEM, showing some number-
theoretic functions that can be defined in the system and some others that cannot. However, we
do not know of any characterization of the recursive functions representable in LEM. This is left
to future investigations.

61

62

Chapter 4

Linear Additives and Probabilistic
Polynomial Time

Soft Linear Logic (SLL) is a logic introduced by Lafont [56] to capture the complexity class P.
It is a “light logic”, i.e. a subsystem of Second-Order Linear Logic with weaker modal rules that
limit the use of duplication, inducing a bound on normalization.

The Curry-Howard paradigm, stating a correspondence between formal logics and computa-
tional calculi, allows to see SLL as a type system, essentially by considering formulas as types
and by giving a complete term decoration to logical derivations, as done in [9]. In this setting, a
term is able to represent the whole structure of a derivation, so the bound on proof normalization
can be turned into a bound on term evaluation.

This approach has a remarkable drawback: the presence of modal rules in SLL requires a heavy
term annotation to faithfully encode derivations. A more reasonable strategy can be obtained by
decorating proofs with terms from the standard λ-calculus. In this alternative setting, a λ-term
does not fully represent a logical derivation, because it misses all the informations about the
applications of modal rules. As a consequence, a bound on term evaluation is no longer inherited
by the structural properties of derivations, and depends entirely on the typing conditions of SLL.

As pointed out by Gaboardi and Ronchi Della Rocca in [38, 40], the mismatch between
λ-terms and logical derivations of SLL produced by the second approach prevents a close cor-
respondence between proof normalization and term evaluation, leading to the failure of the
Subject reduction property: in SLL typed terms exist that become untypable during evaluation.
The failure of the Subject reduction has been first remarked by Lincoln [62] in the more gen-
eral framework of Linear Logic, considered as a type assignment for the standard λ-calculus.
To circumvent this problem, Gaboardi and Ronchi Della Rocca developed in [38, 40] Soft Type
Assignment (STA), a subsystem of SLL obtained by restricting the set of types to the essential
ones, that forbid modalities in the right-hand side of an implication, like A(!B. STA enjoys
the Subject reduction property and is expressive enough to capture the polynomial time.

In [39], Marion et al. investigate the system STA+, an extension of STA characterizing the
non-deterministic polynomial time. STA+ is obtained from STA by endowing the λ-calculus
with a non-deterministic choice operator “+”, and by adding the sum rule, which derives the
judgement Γ `M +N from the premises Γ `M : A and Γ ` N : A. In the resulting λ-calculus,
a term of the form M +N non-deterministically reduces either to M or to N . The sum rule of
STA+ is inspired by the namesake logical rule used by Maurel in [70] for the same purposes but
in the context of LAL (Light Affine Logic), another light logic for the polynomial time (see [6, 7]).

Both in [39] and in [70], the Soundness theorem is achieved by defining a special evaluation

63

strategy, as the presence of the sum rule produces normalizations that are exponential in time
and space with respect to the size of the initial terms. For example, if we consider in STA+

the typable term (λfx.f(n. . .(fx)))(λy.zy + zy) v and we β-reduce it according to a innermost
strategy, after n+ 2 steps we obtain a term with a number of redexes of the kind M +N which
is exponential in n.

The exponential blow up in normalization is a well-known drawback concerning all inference
rules whose premises Γ ` A share the same context Γ or the same predicate A. The additive rules
in Linear Logic are a typical example. The inference rule &R introducing the additive connective
& in the right-hand side of the turnstile allows to conclude Γ ` 〈M,N〉 : A&B from the premises
Γ ` M : A and Γ ` N : B. The presence of &R gives rise to exponential proof normalizations,
exactly as in STA+ (see [65]). Nonetheless, Girard has shown that, by considering a special
evaluation strategy called lazy, it is possible to recover a linear time normalization [46, 44].

The additive rules are closely related to non-determinism. Consequently, different non-
deterministic formulations of these rules have been considered. In [67] Matsuoka extended Linear
Logic with a self-dual additive connective whose cut-elimination involves choices. Moreover, the
author has shown that several light logics are able to capture non-deterministic complexity
classes when endowed with this new connective. A different approach is developed by Diaz-
Caro [33]. The author shows that non-determinism arises naturally by replacing the usual con-
struct πi : A1&A2 (Ai, projecting the i-th component of a pair, with the “ambiguous” construct
πA : A&A(A. Intuitively, the new operator πA lacks the information about which component
of a pair to project and requires a non-deterministic choice.

Recently, Horne [50] introduced restricted forms of additive connectives able to model prob-
abilistic computation. The key observation that leads to these new connectives is that the
standard additives cannot be faithfully interpreted as probabilistic processes, due to the pres-
ence of projections and injections. For example, if the pair 〈head, tail〉 of type A&B represents
the process of “tossing a fair coin”, the projection π1 : A&B(A (selecting the first component
of 〈head, tail〉) would be forcefully interpreted as the process able to choose on which side to
lay the coin, which is by no means probabilistic. Horne shows that, by ruling out both the
projections and the injections from the standard additives, we obtain special connectives, the
so-called sub-additives, in which a probabilistic interpretation can be recovered.

The results in [50] suggest that variants of the additives can be adopted to express probabilistic
computations, and to capture probabilistic complexity classes in the style of light logics. To the
best of our knowledge, however, this approach has not been pursued further.

The aim of this chapter is to fill this gap by exploiting the techniques of linear erasure and
duplication we have investigated in Chapter 3. We first introduce Linearly Additive Multiplicative
Type Assignment (LAM), a new type assignment system extending IMLL2 with weaker formula-
tions of the additive rules, called linear additives. This system enjoys a linear time normalization
and the Subject reduction property. Moreover, as in the case of system LEM developed in the
previous chapter, we define a translation of LAM into IMLL2 that shows how linear additives
relate to the mechanisms of linear weakening and contraction of IMLL2.

What LAM witnesses is the role of the linear additive rules as costless formulations of the
standard additives, with potentially fruitful applications to computational complexity. One of
these applications is represented by STA⊕, a new type system obtained by extending STA with
a probabilistic variant of linear additives that is inspired by Diaz-Caro [33]. Linear additives
provide the key ingredient to capture the probabilistic polynomial time. On the one hand, as
opposed to the standard additives, their introduction does not affect the complexity of normal-
ization. This allows STA⊕ to naturally inherit the polynomial bound established for STA with no
need of specific evaluation strategies to prevent the exponential blow up in computation. This is
a step forward as compared to STA+. On the other hand, linear additives are expressive enough

64

to allow the complete encoding of a Probabilistic Turing Machine in STA⊕.

Outline of the chapter. In this chapter we introduce the systems LAM and STA⊕, and we
prove that STA⊕ characterizes the probabilistic polynomial time functions. In Section 4.1 we
discuss the exponential blow up in normalization for IMALL2 (Section 4.1.1) to motivate the
introduction of the type system LAM (Section 4.1.2). We then explore some basic properties
of LAM showing that this system enjoys the Subject reduction and a linear normalization (Sec-
tion 4.1.3). We conclude the section by defining a translation of LAM into IMLL2 (Section 4.1.4).
In Section 4.2 we briefly recall SLL and STA (Section 4.2.1) in order to present the system
STA⊕ (Section 4.2.2), whose terms will be endowed with a probabilistic multi-step reduction.
In Section 4.3 we establish a confluence result for the multi-step reduction (Section 4.3.1) and
a “weighted” version of the Subject reduction property (Section 4.3.2) from which we infer the
Soundness Theorem for STA⊕ (Section 4.3.3). In Section 4.4 we describe the complete and
detailed encoding in STA⊕ of a Probabilistic Turing Machines that works in polynomial time
(Sections 4.4.1 and 4.4.2), and we finally discuss the characterizations in STA⊕ of the probabilis-
tic complexity classes PP and BPP (Sections 4.4.3).

4.1 Linear additives
In this section we present the Linearly Additive Multiplicative Type Assignment (LAM), a new
system extending IMLL2 with a weaker formulation of the additive rules of Linear Logic called
linear additives and based, quite like LEM in Chapter 3, on the mechanisms of linear contraction
and weakening of IMLL2. LAM is a type assignment for the term calculus Λl,∧ obtained by
endowing Λl with type-depended constructs copy and proj that express, respectively, the sharing
of variables in a pair and the projection of its components.

To motivate the introduction of LAM, and the need for a weaker formulation of the additives,
we briefly recall IMALL2 (Intuitionistic Second Order Multiplicative Additive Linear Logic) and
we show an example of exponential normalization (Proposition 41).

Then we present LAM. The system enjoys the Subject reduction property (Theorem 46) and
a linear normalization (Corollary 47). To conclude, as done in the previous chapter for LEM,
we define a translation of LAM into IMLL2 (Definition 43) and we prove a simulation result
(Theorem 50), that shows how the construct copy exponentially compresses the mechanism of
linear duplication of IMLL2 (Theorem 51).

4.1.1 Toward linear additives: IMALL2 and the exponential blow up
Second-Order Intuitionistic Multiplicative Additive Linear Logic (IMALL2) is obtained by ex-
tending IMLL2 with the so-called “additive rules” (see Section 2.2.2). We present this system as
a type assignment for the λ-calculus Λπ, endowed with explicit pairs and projections.

Definition 36 (The calculus Λπ).

• Let V be a denumerable set of variables. The set Λπ of terms is generated by the following
grammar:

M := x | λx.M | MM | (M,M) | π1(M) | π2(M) (4.1)
where x ∈ V.

• The set FV (M) of free variables of a term M is standard for variables, abstractions and
applications, and extends to the new clauses as follows:

FV((M,N)) = FV(M) ∪ FV(N)

65

FV(πi(M)) = FV(M) i ∈ {1, 2}.

The meta-level substitution of N for the free occurrences of x in M , written M [N/x], is
defined as usual. Similarly, the notion of size of a term M , written |M |, is extended to the
new clauses as follows:

|(M,N)| = |M |+ |N |+ 1

|πi(M)| = |M |+ 1 i ∈ {1, 2}.

A context is a term containing a unique hole [·], generated by the following grammar:

C := [·] | λx.C | CM | MC | (C,M) | (M, C) | π1(C) | π2(C) (4.2)

where, given a context C and a term M , C[M] denotes the term obtained by subtituting
the unique hole in C with M allowing the possible capture of free variables of M .

• The one-step relation →βπ is a binary relation over Λπ. It is defined by the following rules:

(λx.M)N →βπ M [N/x]

π1(M1,M2)→βπ M1

π2(M1,M2)→βπ M2

(4.3)

that apply in any context generated by (4.2). Its reflexive and transitive closure is →∗βπ.
As usual, a λ-term is in (or is a) normal form whenever no reduction rule applies to it.

We present IMALL2 as a type assignment for Λπ in natural deduction style.

Definition 37 (The system IMALL2).

• Let X be a denumerable set of type variables. The types of IMALL2 are generated by the
following grammar:

A := α | A(A | A&A | ∀α.A (4.4)

where α ∈ X . The standard meta-level substitution of B for every free-variables of α in A
is denoted A〈B/α〉.

• IMALL2 is the type assignment system for Λπ displayed in Figure 4.1. It extends IMLL2 in
Figure 3.1(b) with the additive rules &I, &E1 and &E2.

Remark 8. The additives are closely related to non-determinism. Intuitively, the pair (M1,M2)
introduced by the rule &I represents a sort of “stalemate” in computation: we cannot determine in
advance which branching among M1 and M2 will be eventually chosen. The missing information
to break this stalemate is then recovered by the rule &Ei, that introduces the projection πi
selecting the i-th component of a pair and discarding the other. As suggested in [67, 70, 33], one
can give rise to non-deterministic computation by considering a variant of &Ei with a symmetric
form of projection, let us denote it π, whose operational behaviour can be established only when
interacting with a pair (M1,M2), i.e. when π(M1,M2): in this case, either π behaves like π1 and
selects the first component of a pair, or it behaves like π2 and selects the second component.
More formally, the reduction rules corresponding to π would be the following ones:

π(M1,M2)→M1

π(M1,M2)→M2

which introduce non-determinism in computation.

66

x : A ` x : A
ax

Γ, x : A `M : B

Γ ` λx.M : A(B
(I

Γ `M : A(B ∆ ` N : A

Γ,∆ `MN : B
(E

Γ `M1 : A1 Γ `M2 : A2

Γ ` (M1,M2) : A1 &A2

&I
Γ `M : A1 &A2 i ∈ {1, 2}

Γ ` πi(M) : Ai
&Ei

Γ `M : A γ 6∈ FV(Γ)

Γ `M : ∀α.A
∀I

Γ `M : ∀α.A
Γ `M : A〈B/α〉

∀E

Figure 4.1: The system IMALL2.

Let us observe that the sharing of contexts in &I and the projection in &E, which play a
fundamental role in the non-deterministic interpretation of Remark 8, express forms of contrac-
tion and weakening. Figure 4.2(b) provides an explicit and formal counterpart to this intuition
by showing that the additive rules can be represented in the system IMLL2 extended with the
rules contr (contraction) and weak (weakening) of Figure 4.2(a), recalling that ⊗I and ⊗E are
derivable in IMLL2 (see Figure 3.2(c) and Definition 3).

The presence of implicit contractions in the additive rules affects the complexity of normal-
ization by causing an exponential blow up, as we are going to show.

Definition 38 (Nesting IMALL2 terms). For all n ∈ N we define:

An ,

{
A if n = 0,

An , An−1 &An−1 otherwise.

For all x ∈ V, for all M ∈ Λπ, and for all n ∈ N, we define:

addxn ,

{
x if n = 0,

(λy.addyn−1)(x, x) otherwise.
pairMn ,

{
M if n = 0,

(pairMn−1, pair
M
n−1) otherwise.

Observe that pairMn [N/x] = pair
M [N/x]
n . Moreover, notice that pair

(x,x)
n = pairxn+1, be-

cause pairxn+1 has 2n+1 occurrences of x, and the term pair
(x,x)
n = pairxn[(x, x)/x] doubles the

number of occurrences of x in pairxn, which is 2n.

Proposition 41 (Exponential blow up). The following statements hold in IMALL2:

(1) for all n, k ∈ N both λx.addxn and λx.pairxn have type Ak (Ak+n;

(2) for all n ∈ N, |addxn| = O(n) and |pairxn| = O(2n);

(3) for all n ∈ N, addxn reduces to pairxn in n steps.

67

Γ, y : A, z : A `M : B

Γ, x : A `M [x/y, x/z] : B
contr

Γ `M : B

Γ, x : A `M : B
weak

(a) The rules contraction and weakening

y1 : A1, . . . , yn : An `M1 : B1 z1 : A1, . . . , zn : An `M2 : B2 ⊗I
y1 : A1, . . . , yn : An, z1 : A1, . . . , zn : An ` 〈M1,M2〉 : B1 ⊗B2

contr
x1 : A1, . . . , xn : An ` (M1[x1/y1, . . . , xn/yn],M2[x1/z1, . . . , xn/zn]) : B1 ⊗B2

Γ `M : A1 ⊗A2

ax
yi : Ai ` yi : Ai

weak
yi : Ai, y3−i : A3−i ` yi : Ai ⊗E

Γ ` let M be yi, y3−i in yi : Ai

(b) The additives rules are derivable in IMLL2 extended with the rules contr and weak.

Figure 4.2: Additives hide contraction and weakening.

Proof. As for point (1), one can easily check that λx.pairxn has type Ak (Ak+n, for all k ∈ N.
We now prove by induction on n that λx.addxn has type Ak (Ak+n, for all k ∈ N. If n = 0
then addx0 = x, so that λx.x has type Ak (Ak. Let us consider the case n > 0. By induction
hypothesis, λy.addyn−1 has type Ak+1 (Ak+n. If x has type Ak then (x, x) has type Ak+1

and (λy.addyn−1)(x, x) has type Ak+n. Therefore, λx.addxn = λx.((λy.addyn−1)(x, x)) has type
Ak (Ak+n. Concerning point (2), it suffices to prove by induction on n that |addxn| = (5 ·n)+1

and |pairMn | = 2n·|M | +
∑n−1
i=0 2i hold. Let us now prove point (3) by induction on n. The

base case is trivial. If n > 0 then addxn = (λy.addyn−1)(x, x) which reduces in one step to
add

y
n−1[(x, x)/y]. Since by induction hypothesis addyn−1 reduces in n− 1 steps to pair

y
n−1 then

add
y
n−1[(x, x)/x] reduces in n− 1 steps to pair

y
n−1[(x, x)/y], which is pairxn.

In other words, the nested term addxn reduces in n steps to pairxn whose size is O(2n) =
O(2|addn|). Moreover, if M is a term with k redexes, then addxn[M/x] reduces to pairxn[M/x] =
pairMn , and the number of redexes turns into O(2k).

From the viewpoint of ICC, Proposition 41 seems to state that all type systems extending
IMALL2 are unable to capture complexity classes requiring at most a polynomial amount of time
or space (e.g. PTIME, PSPACE, or NPTIME). This is not entirely true, as one can obtain a
polynomial bound by considering specific reduction strategies. A typical example is lazy reduc-
tion, that evaluates a term of IMALL2 both in linear time and in linear space [46], and allows to
characterize PTIME in Light Linear Logic [44], a subsystem of Linear Logic with additive rules.

Lazy reduction “freezes” the evaluation inside a pair (M,N), so a term of IMLL2 does not
reduce to a normal form, in general. To recover a normalization result in IMALL2 we need the
notion of “lazy type”:

68

Definition 39 (Lazy types for IMALL2). We say that A is a lazy type if it contains no negative
occurrence of ∀ and no positive occurrence of &.

All inhabitantsM of lazy type A always reach a normal form by lazy reduction, because each
pair (P1, P2) in M eventually turns into a redex πi(P1, P2) that “unfreezes” the evaluation of Pi.

In the next subsection, we shall consider a radically different approach to circumvent the
exponential blow up in normalization caused by the additives. We introduce LAM, a type system
obtained by extending IMLL2 with a weaker formulation of the additive rules, we shall call linear
additives, that exploits the mechanisms of linear weakening and contraction discussed in the
previous chapter.

4.1.2 The system LAM

The types of LAM are built from the linear implication “(”, the second-order quantification
“∀”, and the new additive connective “∧”, that applies only to closed types free from negative
occurrences of ∀. As in the case of LEM in the previous chapter, these latter types will be the
representatives in LAM of the ground types (Definition 10 of Section 3.1.2), and allow hidden
forms of weakening and contraction in the new system.

Definition 40 (Types of LAM). Let X be a denumerable set of type variables. The types of
LAM are generated by the following grammar:

A,B := α | A(B | A ∧B | ∀α.A (4.5)

where α ∈ X and, in the clause A∧B of (4.5), both A and B must be closed and without negative
occurrences of ∀. The set of types generated by the grammar (4.5) will be denoted Θ∧. With
A〈B/α〉 we denote the standard meta-level substitution of B for every occurrence of α in A.
Finally, the size of a type A in Θ∧, written |A|, is the number of nodes in the syntax tree of A.

We shall define LAM as a type assignment for the term calculus Λl,∧, which is the standard
linear λ-calculus endowed with a type-dependent construct projA1∧A2

i for projection and a vari-
ant of copyVA from the term calculus Λl,´ (Definition 22), able to express the sharing of variables
in a pair (M,N). These constructs are allowed to erase and duplicate what we call “extended
value”, a slightly more general notion of value (Definition 7).

Definition 41 (The calculi Λ∧ and Λl,∧).

• An extended value is any term in Λπ that is either a closed and normal term of Λl or a pair
(M,N), with M and N extended values. Extended values are ranged over by W .

• Let V be a denumerable set of variables. The set Λ∧ of terms is generated by the following
grammar:

M := x | λx.M | MM | (M,M) | copyWA M as x, y in (M,M) | projA1∧A2
i (M) (4.6)

where x, y ∈ V, i ∈ {1, 2}, W is an extended value and A,A1, A2 ∈ Θ∧. We extend both
FV (M) and |M | in Definition 36 to the new clauses:

FV(copyWA M as x1, x2 in (N1, N2)) = FV(M) ∪ (FV((N1, N2)) \ {x1, x2})
FV(projA1∧A2

i (M)) = FV(M) i ∈ {1, 2}

|copyWA M as x1, x2 in (N1, N2)| = |W |+ |M |+ |(N1, N2)|+ 1

69

|projA1∧A2
i (M)| = |M |+ 1 i ∈ {1, 2}.

The meta-level substitution of N for the free occurrences of x in M , written M [N/x], is
defined as usual. A context is a term containing a unique hole [·] generated by the following
grammar:

C := [·] | λx.C | CM | MC | (C,M) | (M, C) | copyWA C as x1, x2 in (M1,M2)

copyWA M as x1, x2 in (C, N) | copyWA M as x1, x2 in (N, C) | projA1∧A2
i (C)

(4.7)

where, given a context C and a term M , C[M] denotes the term obtained by subtituting
the unique hole in C with M allowing the possible capture of free variables of M .

• The one-step reduction relation → is a binary relation over Λ∧ defined by the following
rules:

(λx.M)N →M [N/x]

projA1∧A2
1 ((W1,W2))→W1

projA1∧A2
2 ((W1,W2))→W2

copyW
′

A W as x1, x2 in (M1,M2)→ (M1[W/x1],M2[W/x2])

(4.8)

and can be applied in any context generated by (4.7), whereW,W ′,W1,W2 are all extended
values. Its reflexive and transitive closure is denoted →∗. A term is in (or is a) normal
form if no reduction applies to it.

• A term M ∈ Λ∧ is linear if:

– each free variable of M has just one free occurrence in it;
– for each subterm λx.N of M , x occurs exactly once in N ;
– for each subterm (N1, N2) of M not in the scope of a copyWA construct, FV (N1) =
FV (N2) = ∅;

– for each subterm copyW
′

A P as x1, x2 in (N1, N2) of M , xi occurs in Ni exactly once
and FV (N1) = {x1} 6= {x2} = FV (N2).

The set of all linear terms in Λ∧ is denoted Λl,∧.

Remark 9. A term (N1, N2) ∈ Λπ is typable in IMALL2 just when FV (N1) = FV (N2), i.e. when
its components N1 and N2 share the same variables. This idea is maintained in Λl,∧, where a
pair (N1, N2) can be of two kinds: either N1 and N2 are closed terms (representing a trivial form
of sharing) or each Ni contains exactly one free variable xi, and in this case (N1, N2) is endowed
with a construct copy expressing a linear form of sharing for the variables x1 and x2. So, for
example, the term λxy.(x, y) ∈ Λ∧ is not a legal term of Λl,∧, while λz.copyWA z as x, y in (x, y)
is. The latter can be seen as a linear counterpart of λz.(z, z) ∈ Λπ. Extended values are special
terms in Λl,∧, so that λxy.(x, y) is not among them.

Proposition 42. If M ∈ Λl,∧ and M → N then N ∈ Λl,∧.

LAM is a type assignment system for Λl,∧ in natural deduction style. Its inference rules make
meaningful both the type and the term annotations in the constructs projA1∧A2

1 and copyWA .

Definition 42 (The system LAM). LAM is the type assignment system for Λl,∧ displayed in
Figure 4.3, and extends IMLL2 (Figure 3.1(b)) with the linear additive rules ∧I1, ∧I0, ∧E1, and
∧E2. It requires the following condition:

70

x : A ` x : A
ax

Γ, x : A `M : B

Γ ` λx.M : A(B
(I

Γ `M : A(B ∆ ` N : A

Γ,∆ `MN : B
(E

`M1 : A1 `M2 : A2

` (M1,M2) : A1 ∧A2

∧I0
Γ `M : A1 ∧A2 i ∈ {1, 2}

Γ ` projA1∧A2
i (M) : Ai

∧Ei

Γ ` N : A x1 : A `M1 : B1 x2 : A `M2 : B2 `W : A

Γ ` copyWA N as x1, x2 in (M1,M2) : B1 ∧B2

∧I1

Γ `M : A γ 6∈ FV(Γ)

Γ `M : ∀α.A
∀I

Γ `M : ∀α.A
Γ `M : A〈B/α〉

∀E

Figure 4.3: The system LAM.

• the type A in ∧I1 must be closed and free from negative occurrences of ∀.

The linear additive rules ∧I1, ∧I0, ∧E1, and ∧E2 recall the additives in IMALL2, and involve
“hidden” applications of contraction and weakening similar to Figure 4.2. The crucial difference
is that linear additives apply to types that are closed and free from negative occurrences of ∀,
which are considered as the representatives in LAM of ground types (Definition 10). This ensures
that each implicit contraction and weakening produced by the rules ∧I1, ∧I0, ∧E1, and ∧E2 can
be faithfully mirrored by contractions and weakenings of ground types in IMLL2. In particular,
the rule ∧I1 has two premises more than &I of IMALL2. On the one hand, the premise with
shape Γ ` N : A is required to prove the Substitution property (Lemma 45). On the other hand,
the premise with shape `W : A “witnesses” that A is inhabited by at least one (extended) value,
quite like the rule c of LEM. This assures that the hidden contraction of the type A produced by
the sharing of contexts represents a contraction of a ground type in IMLL2, because Theorem 10
states that ground types are duplicable if inhabited.

All these intuitions will be formalized by defining a translation of LAM into IMLL2 (Defini-
tion 43) showing how the constructs copyWA and projA1∧A2

i , that copy and discard extended
values in Λl,∧, relate to duplicators and erasers of ground types (Theorem 50), that copy and
discard values in the standard linear λ-calculus.

Finally, let us remark that the rules ∧I1 and ∧I0 represent two special cases of the rule &I of
IMALL2: the former has contexts with a single assumption, while the latter has no assumption at
all (where the notation 1 and 0 in ∧I1 and ∧I0 is related to the number of assumptions of these
rules). We adopt this presentation as just a matter of convenience: each “shared” assumption
needs an explicit copyWA construct at the level of terms, and arbitrarily large contexts would
produce a heavy notation. This has no real impact on the algorithmic expressiveness of the
system, since a general inference rule ∧In, with n assumptions on contexts, can be easily derived
in the system. As an example, we show a derivation of the rule ∧I2 in Figure 4.4(a), recalling

71

that ⊗I and ⊗E are definable in IMLL2, and hence in LAM.
We conclude by stating a property analogous to Lemma 16 for IMLL2 and to Lemma 26.(2)

for LEM:

Proposition 43. Let W be and extended value and A be a closed type free from negative occur-
rences of ∀. If D/ `W : A is a derivation of LAM, then |W | ≤ |A|.

Proof. It suffices to prove by an easy induction on the structure of terms that, for all normal
terms M ∈ Λl,∧ such that x1 : A1, . . . , xn : An `M : A, where A (resp. A1, . . . , An) is free from
negative (resp. positive) occurrences of ∀, then |M | ≤

∑n
i=1 |Ai|+ |A|.

4.1.3 Subject reduction and linear normalization
Subject reduction requires some standard preliminary lemmas. With a little abuse of notation,
in order to make the presentation easier we shall forget the distinction between free and bound
type variables in the statement of the lemma below:

Lemma 44 (Generation). The following statements hold:

(1) If D / Γ ` x : A, then A = ∀~α.(B〈D1/β1, . . . , Dn/βn〉) and D is an instance of ax with
conclusion x : B ` x : B followed by a sequence of ∀I and ∀E, where ~α = α1, . . . , αm, for
some m ≥ 0.

(2) If D /Γ ` λx.M : A, then A = ∀~α.((B(C)〈D1/β1, . . . , Dn/βn〉) and D is some D′ /Γ, x :
B `M : C followed by (I and a sequence of ∀I and ∀E, where ~α = α1, . . . , αm, for some
m ≥ 0.

(3) If D/Γ `MN : A, then A = ∀~α.(C〈D1/β1, . . . , Dn/βn〉) and D is some D′ /Γ′ `M : B(
C and D′′ / Γ′′ ` N : B followed by (E and a sequence of ∀I and ∀E, where Γ = Γ′,Γ′′

and ~α = α1, . . . , αm, for some m ≥ 0.

(4) If D /Γ ` copyWA N as x1, x2 in (M1,M2) : B, then B = C1 ∧C2 and the last rule of D is
∧I1.

(5) If D / Γ ` (M1,M2) : A, then Γ = ∅, A = B1 ∧B2 and the last rule of D is ∧I0.

(6) If D/Γ ` projB1∧B2
i (M) : A then A = ∀~α.(B′i〈D1/β1, . . . , Dn/βn〉) and D is some D′ /Γ `

M : B1∧B2 followed by ∧Ei and a sequence of ∀I and ∀E, where ~α = α1, . . . , αm, for some
m ≥ 0.

Proof. Straightforward, because the natural deduction system is essentially syntax directed.

Lemma 45 (Linear substitution for LAM). Let D1 /Γ, x : A `M : C and D2 /∆ ` N : A. Then
there exists a derivation S(D1,D2) such that:

• S(D1,D2) / Γ,∆ `M [N/x] : C,

• |M [N/x]| = |M |+ |N | − 1.

Proof. The proof is by induction onD1. If the last rule is ax thenM = x. We set S(D1,D2) = D2,
so that |M [N/x]| = |N |. Suppose D1 is of the form:

D′ / Γ, x : A ` P : B D′′ / x1 : B ` Q1 : C1 D′′′ / x2 : B ` Q2 : C2 D′′′′/ `W : B
∧I1

Γ, x : A ` copyWB P as x1, x2 in (Q1, Q2) : C1 ∧ C2

72

Γ
`
N

1
:
A

1
Γ
`
N

2
:
A

2
⊗
I

Γ
,∆
`
〈N

1
,N

2
〉:
A

1
⊗
A

2

x
i

:
A

1
,y
i

:
A

2
`
M
i

:
C
i

. . .
z i

:
A

1
⊗
A

2
`
l
e
t
z i

b
e
x
i,
y i

i
n
M
i

:
C
i i∈

{1
,2
}

`
W

1
:
A

1
`
W

2
:
A

2
⊗
I

`
〈W

1
,W

2
〉:
A

1
⊗
A

2
∧I

1
Γ
,∆
`
c
o
p
y
〈W

1
,W

2
〉

A
1
⊗
A

2
〈N

1
,N

2
〉
a
s
z 1
,z

2
i
n

(l
e
t
z 1

b
e
x

1
,y

1
i
n
M

1
,l
e
t
z 2

b
e
x

2
,y

2
i
n
M

2
)

:
C

1
∧
C

2

(a
)
D
er
iv
at
io
n
of
∧
I2
.

z
:
B

2
`
z

:
B

2
(

I
`
λ
z
.z

:
B

2
(

B
2

. . .
y

:
B

1
`
c
o
p
y

(t
t
,t
t
)

B
1

y
a
s
y 1
,y

2
i
n

(y
1
,y

2
)

:
B

2
(

E
y

:
B

1
`

(λ
z
.z

)(
c
o
p
y

(t
t
,t
t
)

B
1

y
a
s
y 1
,y

2
i
n

(y
1
,y

2
))

:
B

2
(

I
`
λ
y
.(

(λ
z
.z

)(
c
o
p
y

(t
t
,t
t
)

B
1

y
a
s
y 1
,y

2
i
n

(y
1
,y

2
))

)
:
B

1
(

B
2

. . .
x

:
B
`
c
o
p
y
t
t

B
x
a
s
x

1
,x

2
i
n

(x
1
,x

2
)

:
B

1
(

E
x

:
B
`

(λ
y
.(

(λ
z
.z

)(
c
o
p
y

(t
t
,t
t
)

B
1

y
a
s
y 1
,y

2
i
n

(y
1
,y

2
))

))
(c
o
p
y
t
t

B
x
a
s
x

1
,x

2
i
n

(x
1
,x

2
))

:
B

2
(

I
`
λ
x
.(
λ
y
.(

(λ
z
.z

)(
c
o
p
y

(t
t
,t
t
)

B
1

y
a
s
y 1
,y

2
i
n

(y
1
,y

2
))

))
(c
o
p
y
t
t

B
x
a
s
x

1
,x

2
i
n

(x
1
,x

2
))

:
B
(

B
2

(b
)
D
er
iv
at
io
n
in

L
A
M

of
th
e
te
rm

co
rr
es
po

nd
in
g
to
λ
x
.a
d
d
x 2

:
B
(

B
2
,w

he
re

B
2
,

B
1
∧
B

1
an

d
B

1
,

B
∧
B
.

F
ig
ur
e
4.
4:

So
m
e
de
ri
va
ti
on

s
in

L
A
M
.

73

so that C = C1 ∧ C2 and M = copyWB P as x1, x2 in (Q1, Q2). By induction hypothesis, there
exists S(D′,D2)/Γ ` P [N/x] : A such that |P [N/x]| = |P |+|N |−1. We define S(D1,D2)/Γ,∆ `
copyWB P [N/x] as x1, x2 in (Q1, Q2) : C1 ∧ C2 as the derivation obtained by applying ∧I1 to
S(D′,D2), D′′, D′′′, D′′′′. Moreover, by using the induction hypothesis, we have:

|M [N/x]| = |W |+ |P [N/x]|+ |(Q1, Q2)|+ 1

= |W |+ |P |+ |N |+ |(Q1, Q2)| = |M |+ |N | − 1.

The other cases are similar.

The Subject reduction property says that typability is preserved under reduction. We actually
prove a stronger formulation of this property for LAM, stating also that the size of typable terms
strictly decreases during reduction.

Theorem 46 (Subject reduction for LAM). If D1 / M1 : A and M1 →M2 then:

• there exists D2 such that D2 / Γ `M2 : A;

• |M2| < |M1|.

Proof. The proof proceeds by cases analysis onM1 →M2. We just consider the most interesting
cases:

• Suppose M1 = (λx.P)Q and M2 = P [Q/x]. By applying Lemma 44.(2) and (3), D must
be as follows:

D′
Γ′, x : B ` P : C

(I
Γ′ ` λx.P : B(C

D′′
Γ′′ ` Q : B

(E
Γ′,Γ′′ ` (λx.P)Q : C

... γ
Γ ` (λx.P)Q : A

where Γ = Γ′,Γ′′ and γ is a sequence of ∀I and ∀E. By applying Lemma 45 there exists a
derivation S(D′,D′′) such that S(D′,D′′) / Γ ` P [Q/x] : C and |P [Q/x]| = |P | + |Q| − 1.
We define D2 as the following derivation:

S(D′,D′′)
Γ′,Γ′′ ` P [Q/x] : C

... γ
Γ ` P [Q/x] : A

where, |M [N/x]| = |M |+ |N | − 1 < |(λx.M)N |.

• Suppose M1 = copyW
′

A W as x1, x2 in (Q1, Q2) and M2 = (Q1[W/x1], Q2[W/x2]). Then,
by Lemma 44.(4), A = C1 ∧ C2 and D is as follows:

D′ / Γ `W : B D′′ / x1 : B ` Q1 : C1 D′′′ / x2 : B ` Q2 : C2 D′′′′/ `W ′ : B
∧I1

Γ ` copyW ′B W as x1, x2 in (Q1, Q2) : C1 ∧ C2

74

We apply Lemma 45 twice and we get that there exist two derivations S(D′,D′′)/ `
Q1[W/x1] : C1 and S(D′,D′′′)/ ` Q2[W/x2] : C2 such that |Qi[W/xi]| = |Qi|+ |W | − 1 for
i ∈ {1, 2}. We define D2 as the following derivation:

S(D′,D′′)
` Q1[W/x1] : C1

S(D′,D′′′)
` Q2[W/x2] : C2 ∧I0` (Q1[W/x1], Q2[W/x2]) : C1 ∧ C2

By Proposition 43 we can safely assume thatW ′ has largest size among the extended values
with type B. Therefore:

|M2| = |Q1[W/x1]|+ |Q2[W/x2]|+ 1 = 2 · |W |+ |Q1|+ |Q2| − 1

< |W ′|+ |W |+ |(Q1, Q2)|+ 1 = |M1|.

• Suppose M1 = projB1∧B2
i (W1,W2) and M2 = Wi. By applying Lemma 44.(5) and

Lemma 44.(6), Γ = ∅ and D must be as follows:

D1

`W1 : B1

D2

`W2 : B2 ∧I0` (W1,W2) : B1 ∧B2 ∧Ei
` projB1∧B2

i (W1,W2) : Bi

... γ

` projB1∧B2
i (W1,W2) : A

where γ is a sequence of ∀I and ∀E. We define D2 as follows:

Di
`Wi : Bi

... γ
`Wi : A

where |Wi| < |projB1∧B2
i (W1,W2)|.

A straightforward corollary of Theorem 46 is the following:

Corollary 47 (Linear normalization for LAM). Let D / Γ ` M : A be a lazy derivation. Then
M reduces to a normal form in linear time.

According to Corollary 47, no exponential blow up can be produced during normalization in
LAM, as opposed to what happens in IMALL2 (Proposition 41). Nonetheless, all IMALL2 terms
of the form λx.addxn : Ak (Ak+n in Definition 38 are representable by suitable typable terms of
LAM, provided that A is taken closed and free from negative occurrences of ∀. As an example,
Figure 4.4(b) shows the encoding of λx.addx2 : B(B2 in LAM, where B is the type of booleans
in (3.2), B2 = B1 & B1, and B1 = B & B.

75

How is this possible? The crucial point is in the way duplication works in LAM. As compared
to IMALL2, in which we can copy inhabitants of any type and with arbitrarily large size, in LAM
duplication is restricted to closed types free from negative occurrences of ∀, and to extended
values. On the one hand, since duplication applies only to normal forms, redexes cannot be copied
during reduction, thus preventing an exponential time normalization. On the other hand, since
by Proposition 43 these types have only finitely many extended values among their inhabitants,
we can always predict and bound the increase of size produced by duplicating an extended value,
thus preventing a size explosion during normalization.

4.1.4 Translation of LAM into IMLL2 and exponential compression

In Section 3.4 a translation of LEM into IMLL2 has been defined which shows how the constructs
discardσ and copyVσ relate to the mechanisms of linear erasure and duplication of IMLL2. We
follow essentially the same approach for LAM by mapping the constructs projA1∧A2

i and copyWA
to erasers and duplicators of ground types of IMLL2.

We start with the following preliminary lemma:

Lemma 48. Let W be an extended value and A be a type of LAM:

(1) if M ∈ Λl,∧ is a term typable in LAM:

• every subterm of M of the form projA1∧A2
i (N) is such that A1, A2 are closed and free

from negative occurrences of ∀, and P is an inhabitant of A1 ∧A2;

• every subterm of M of the form copyWA P as x1, x2 in (Q1, Q2) is such that A is
closed and free form negative occurrences of ∀, and both W , P are inhabitants of A;

(2) if A′ (resp. W ′) is A (resp. W) in which every subtype B∧C (resp. every subterm (M,N))
occurring in it has been replaced by B ⊗ C (resp. 〈M,N〉), then W has type A if and only
if W ′ has type A′.

Proof. Straightforward.

The translation from LAM to IMLL2 can be defined as follows:

Definition 43 (From LAM to IMLL2). The map (_)• : LAM −→ IMLL2 translates a derivation
D / Γ `LAM M : A into a derivation D• / Γ• `IMLL2 M

• : A•:

• for all types σ ∈ Θ∧, it is defined as follows:

α• , α

(A(B)• , A•(B•

(A ∧B)• , A• ⊗B•

(∀α.A)• , ∀α.A•

• for all contexts Γ = x1 : A1, . . . , xn : An, we set Γ• , x1 : A•1, . . . , xn : A•n;

• for all typable terms M ∈ Λl,∧, it is defined as follows:

x• , x

(λx.N)• , λx.N•

76

(NP)• , N•P •

(N1, N2)• , 〈N•1 , N•2 〉
(projA1∧A2

1 (N))• , let N• be x1, x2 in (let EA•2 x2 be I in x1)

(projA1∧A2
2 (N))• , let N• be x1, x2 in (let EA•1 x1 be I in x2)

(copyWA N as x1, x2 in (P1, P2))• , let DW
•

A• N
• be x1, x2 in 〈P •1 , P •2 〉.

where Theorem 9 and Theorem 10 assure the existence of the erasure EA•i and the duplicator
DW

•

A• of σ• (with the notation as in Remark 4), because by Lemma 48.(1):

– A,A1, A2 are closed and free from negative occurrences of ∀, so that A•, A•1 and A•2
are ground types,

– W is an extended value that inhabits A, and hence W • is a value that inhabits A• by
Lemma 48.(2);

• the definition of (_)• extends to any derivation D / Γ `M : A of LAM in the obvious way,
following the structure of M•. Figure 4.5 collects the most interesting cases.

Before stating the simulation theorem we introduce a substitution lemma:

Lemma 49. For all terms M,N ∈ Λl,∧ typable in LAM, M•[N•/x] = (M [N/x])•.

Proof. Similar to Lemma 34.

We now show that every reduction on terms typable in LAM can be simulated in the linear
λ-calculus by means of the βη-reduction. Since by Theorem 3 every linear λ-term has type in
IMLL, and hence in IMLL2, this result can be seen as a simulation property relating LAM and
IMLL2.

Theorem 50 (Simulation for LAM). Let D / Γ `M : A be a derivation in LAM. If M1 →∗ M2

then M•1 →∗βη M•2 :

M1 M2

M•1 M•2

∗

∗
βη

Proof. By Theorem 46, it suffices to show that M1 → M2 implies M•1 →∗βη M•2 . We proceed
by case analysis and we consider the most interesting cases. Suppose M1 is (λx.P)Q and M2 =
P [Q/x]. Lemma 49 implies ((λy.P)Q)• = (λy.P •)Q• →β P •[Q•/x] = (P [Q/x])•. If M1 is
projA1∧A2

i ((W1,W2)) and M2 is Wi, then (W1,W2) is an extended value of type A1 ∧ A2 by
Lemma 48.(1), hence 〈W •1 ,W •2 〉 is a value of type A•1 ⊗A•2 by Lemma 48.(2). Moreover, EA•3−i is
an eraser of A•3−i by Definition 43. Therefore:

(projA1∧A2
i ((W1,W2)))• = let 〈W •1 ,W •2 〉 be x1, x2 in (let EA•3−i x3−i be I in xi)

→β let EA•3−iW3−i be I in Wi

→∗β W •i

by Theorem 9. If M1 is copyW
′

A W as x1, x2 in (N1, N2) and M2 is (N1[W/x1], N2[W/x2]),
then W is an extended value of type A by Lemma 48.(1), hence W • is a value of type A• by
Lemma 48.(2). Moreover, D(W ′)•

A• is a duplicator of A• by Definition 43. Therefore:

(copyW
′

σ W as x1, x2 in (N1, N2))• , let D
(W ′)•

σ• W • be x1, x2 in 〈N•1 , N•2 〉

77

D

1

`
N

1
:
A

1

D
2

`
N

2
:
A

2
∧
I0

`
(N

1 ,N
2)

:
A

1 ∧
A

2

•

,

(
D

1

`
N

1
:
A

1)
•

(
D

2

`
N

2
:
A

2)
•

⊗
I

`
〈N
•1
,N
•2 〉

:
A
•1 ⊗

A
•2

D

Γ
`
N

:
A

1 ∧
A

2
i∈
{1,2}

∧
E
i

Γ
`
p
r
o
j
A

1 ∧
A

2
i

(N
)

:
A
i

•

,
(

D
Γ
`
N

:
A

1 ∧
A

2)
•

...
x

3−
i

:
A
•3−
i `

E
A
•3−
i
x

3−
i

:
1

a
x

x
i

:
A
•i
`
x
i

:
A
•i

1E
x

1
:
A
•1 ,x

2
:
A
•2
`
l
e
t
E
A
•3−
i
x

3−
i
b
e

I
i
n
x
i

:
A
•i
⊗
E

Γ
•
`
l
e
t
N
•
b
e
x

1 ,x
2
i
n

(l
e
t
E
A
•3−
i
x

3−
i
b
e

I
i
n
x
i)

:
A
•i

D

1

Γ
`
N

:
A

D
2

x
1

:
A
`
P

1
:
B

1

D
3

x
2

:
A
`
P

2
:
B

2

D
4

`
W

:
A
∧
I1

Γ
`
c
o
p
y
WA
N

a
s
x

1 ,x
2
i
n

(P
1 ,P

2)
:
B

1 ∧
B

1

•

,

(
D

4

`
W

:
A)
•

...
`
D
W
•

A
•

:
A
•
(

A
•⊗

A
•

(
D

1

Γ
`
N

:
A)
•

(
E

Γ
•
`
D
W
•

A
•
N
•

:
A
•⊗

A
•

(
D

2

x
1

:
A
`
P

1
:
B

1)
• (

D
2

x
2

:
A
`
P

2
:
B

2)
•⊗
I

x
1

:
A
•,x

2
:
A
•
`
〈P
•1
,P
•2 〉

:
B
•1
⊗
B
•2
⊗
E

Γ
•
`
l
e
t
D
W
•

A
•
N
•
b
e
x

1 ,x
2
i
n
〈P
•1
,P
•2 〉

:
B
•1
⊗
B
•2

F
igure

4.5:
T
he

translation
of

the
rules

∧
I0,∧

E
i,and

∧
I1.

78

→∗βη let 〈W •,W •〉 be x1, x2 in 〈N•1 , N•2 〉 Thm. 10

→β 〈N•1 [W •/x1], N•2 [W •/x2]〉
= (N1[W/x1], N2[W/x2])•. Lem. 49

Theorem 51 (Exponential compression for LAM). Let D / Γ ` M : A be a derivation in LAM.
Then, |M•| = O(2|M |

k

), for some k ≥ 1.

Proof. The proof is similar to the one of Theorem 37.

4.2 The system STA⊕

In the previous section we presented LAM as an extension of IMLL2 with linear additives, a weaker
version of the usual additives that have no impact on the complexity of normalization. In what
follows we study an application of linear additives to ICC by introducing STA⊕, a type system
able to capture the probabilistic polynomial time (Theorems 76 and 91).

First, we recall Soft Linear Logic (SLL) [56], formulated as a type assignment for the standard
λ-calculus, and we discuss a counterexample to the Subject reduction property for SLL. This
leads us to consider a subsystem of SLL developed by Gaboardi and Ronchi Della Rocca in [40]
and called Soft Type Assignment (STA).

Then, we present STA⊕ as a system combining STA with a non-deterministic variant of linear
additives inspired by Diaz-Caro [33]. STA⊕ is defined as the type assignment for an extension
of Simpson’s linear λ-calculus [85] (see Section 2.2.3), whose terms will be endowed with a
probabilistic multi-step reduction relation based on the surface reduction.

4.2.1 Soft Type Assignment

Soft Linear Logic (SLL) is a logical system introduced by Lafont in [56]. It is a subsystem of
Second-Order Linear Logic (LL2) in which the exponential rules p (promotion), d (dereliction), w
(weakening), and c (contraction), displayed in intuitionistic form in Figure 4.6(a), are replaced
by the rules sp (soft promotion) and m (multiplexor) in Figure 4.6(b). Since replacing the
exponential rules with the rules sp, m and dig (digging) yields and equivalent formulation of
Linear Logic, a fundamental aspect of SLL is that dig is forbidden and, as a consequence, that
!A (!!A is no longer provable. This means that modalities in SLL can be used to keep track
of the number of duplications in a derivation, producing a polynomial bound on the number of
cut-elimination steps.

Following Gaboardi and Ronchi della Rocca [40], we present the intuitionistic version of SLL
as a type assignment system for the standard λ-calculus in “quasi” natural deduction, i.e. all
rules but those for “!” are in natural deduction style. We actually consider the ((,∀, !)-fragment
of the system, being enough to capture PTIME. With a little abuse of terminology, we still refer
to the resulting system as SLL.

Definition 44 (The system SLL).

• Let X be a denumerable set of type variables. The types of SLL are generated by the
following grammar:

A := α | A(A | !A | ∀α.A (4.9)

79

!A1, . . . , !An ` C
!A1, . . . , !An ` !C

p
Γ, A ` C
Γ, !A ` C

d
Γ ` C

Γ, !A ` C
w

Γ, !A, !A ` C
Γ, !A ` C

c

(a) The exponential rules of Intuitionistic Linear Logic.

A1, . . . , An ` C
!A1, . . . , !An ` !C

sp
Γ, A, n. . ., A ` C (n ≥ 0)

Γ, !A ` C
m

Γ, !!A ` C
Γ, !A ` C

dig

(b) An equivalent formulation of the exponential rules.

Figure 4.6: Linear Logic and exponential rules.

where α ∈ X . If Γ is x1 : A1, . . . , xn : An then !Γ will be used on place of x1 : !A1, . . . ,
xn : !An. With A〈B/α〉 we denote the standard meta-level substitution of B for every free
occurrence of α in A.

• The system SLL, as a type assignment for the standard λ-calculus, is depicted in Fig-
ure 4.7(a).

It is well-known from Lincoln [62] that the subject reduction property fails in the type-
assignment system obtained by decorating Intuitionistic Linear Logic with terms of the standard
λ-calculus. As remarked in Gaboardi and Ronchi Della Rocca [40], this problem applies to SLL
as well.

Example 16. A possible typing for the term (λy.yxx)((λz.sz)w) in SLL is given by the derivation
in Figure 4.7(b). After a step of β-reduction, we obtain the term y((λz.sz)w)((λz.sz)w), which
is no longer typable in the system.

Gaboardi and Ronchi della Rocca traced the failure of the subject reduction to the presence
of modalities in the right-hand side of an implication, like in A(!B, that are not introduced by
a sp rule. To overcome this problem, they designed Soft Type Assignment (STA), a subsystem
of SLL obtained by restricting types to the so-called essential ones, forbidding occurrences of the
modality in the undesired positions.

Definition 45 (The system STA).

• Let X be a denumerable set of type variables. The essential types are generated by the
following grammar:

A := α | σ(A | ∀α.A (4.10)
σ := A | !σ (4.11)

where α ∈ X . The grammar in (4.10) generates the linear types, and the grammar in (4.11)
generates the exponential types. Exponential types are ranged over by σ, τ . If Γ is x1 : A1,
. . . , xn : An then !Γ will be used in place of x1 : !A1, . . . , xn : !An. With A〈B/α〉 we
denote the standard meta-level substitution of B for every free occurrence of α in A.

80

x
:
A
`
x

:
A
a
x

Γ
,x

:
A
`
M

:
B

Γ
`
λ
x
.M

:
A
(

B
(

I
Γ
`
M

:
A
(

B
∆
`
N

:
A

Γ
,∆
`
M
N

:
B

(
E

Γ
`
M

:
A

!Γ
`
M

:
!A

sp
Γ
,x

1
:
A
,
n ..
.,
x
n

:
A
`
M

:
B

(n
≥

0
)

Γ
,x

:
!A
`
M

[x
/
x

1
,.
..
,x
/
x
n
]

:
B

m

Γ
`
M

:
A
〈γ
/α
〉

γ
6∈

F
V

(Γ
)

Γ
`
M

:
∀α
.A

∀I
Γ
`
M

:
∀α
.A

Γ
`
M

:
A
〈B
/
α
〉
∀E

(a
)
T
he

sy
st
em

S
L
L
.

. . .
y

:
A
(

A
(

B
,x

1
:
A
,x

2
:
A
`
y
x

1
x

2
:
B

m
y

:
A
(

A
(

B
,x

:
!A
`
y
x
x

:
B

(
I

y
:
A
(

A
(

B
`
λ
x
.y
x
x

:
!A
(

B

a
x

s
:
B
(

!A
`
s

:
B
(

!A
a
x

z
:
B
`
z

:
B
(

E
s

:
B
(

!A
,z

:
B
`
sz

:
!A

(
I

s
:
B
(

!A
`
λ
z
.s
z

:
B
(

!A
a
x

w
:
B
`
w

:
B
(

E
s

:
B
(

!A
,w

:
B
`

(λ
z
.s
z
)w

:
!A
(

E
y

:
A
(

A
(

B
,s

:
B
(

!A
,w

:
B
`

(λ
x
.y
x
x

)(
(λ
z
.s
z
)w

)
:
B

(b
)
C
ou

nt
er
ex
am

pl
e
to

th
e
Su

bj
ec
t
re
du

ct
io
n
pr
op

er
ty

in
S
L
L
.

F
ig
ur
e
4.
7:

T
he

sy
st
em

S
L
L
an

d
th
e
fa
ilu

re
of

th
e
Su

bj
ec
t
re
du

ct
io
n
pr
op

er
ty
.

81

x : A ` x : A
ax

Γ, x : σ `M : A

Γ ` λx.M : σ(A
(I

Γ `M : σ(A ∆ ` N : σ

Γ,∆ `MN : A
(E

Γ `M : σ

!Γ `M : !σ
sp

Γ, x1 : σ, n. . ., xn : σ `M : τ (n ≥ 0)

Γ, x : !σ `M [x/x1, . . . , x/xn] : τ
m

Γ `M : A〈γ/α〉 γ 6∈ FV(Γ)

Γ `M : ∀α.A
∀I

Γ `M : ∀α.A
Γ `M : A〈B/α〉

∀E

Figure 4.8: The system STA.

• STA is the type assignment system for the standard λ-calculus depicted in Figure 4.8.

A fundamental property of the system is that, whenever Γ ` M : !σ is derivable in STA, the
type !σ must be introduced by a sp rule. This property is the key step to the subject reduction:

Proposition 52 (Subject reduction for STA [38]). If D / Γ ` M : τ and M →β M
′ then there

exists D′ such that D′ / Γ `M ′ : τ .

Theorem 53 (Polytime soundness and completeness [40]). Every term M typable in STA can
be evaluated to a normal form on a Turing Machine in polynomial time (with respect to |M |).
Moreover, any language recognisable in polynomial time can be represented by a term with type
in STA.

A similar result has been proved in [40] for FPTIME, i.e. the class of functions on strings that
can be computed in polynomial time (see Section 2.3.1).

4.2.2 The system STA⊕

In what follows we present STA⊕, a type system that extends STA with a non-deterministic
variant of the linear additives in LAM, and we endow typable terms in the new system with
a probabilistic multi-step reduction relation ⇒ based on Simpson’s surface reduction [85] (see
Section 2.2.3).

To begin with, we define the types of STA⊕. These combine the essential types of STA with
the linear additive connective ∧.

Definition 46 (Types for STA⊕). Let X be a denumerable set of type variables. The grammar
in (4.12) generates the linear types and the grammar in (4.13) the exponential types:

A,B := α | σ(A | A ∧B | ∀α.A (4.12)
σ := A | !σ (4.13)

82

where α ∈ X and, in the clause A ∧ B of (4.12), both A and B must be closed and free from
modalities and negative occurrences of ∀. The set of all types generated by the grammar (4.13) is
denoted Θ∧,!. A type is strictly exponential if it is of the form !σ. A strictly exponential context
is a context containing only strictly exponential types and, similarly, a linear context contains
only linear types. If Γ is x1 : A1, . . . , xn : An, then !Γ is x1 : !A1, . . . , xn : !An. Finally, A〈B/α〉
is the standard meta-level substitution of B for every occurrence of α in A.

We shall define STA⊕ as the type assignment system for the term calculus Λ!
l,⊕ that can be

described as follows:

• it is based on Simpson’s linear λ-calculus [85], i.e. it has a linear abstraction λx.M , a
non-linear abstraction λ!x.M , a !-operator !N , and it is endowed with a surface reduction
not evaluating inside the scope of “ !” (see Section 2.2.3);

• it has explicit dereliction d, as in Ronchi Della Rocca and Roversi [77];

• it has the construct copyWA and pairs (M,N) from LAM;

• it has constructs of the form projA∧BA and projA∧BB , which are type-dependent variants of
the projections projA∧B1 and projA∧B2 of LAM based on Diaz-Caro [33].

The !-operator and the related surface reduction will play a central role in recovering confluence
in a probabilistic setting (Section 4.3.1). The presence of explicit dereliction constructs d is then
required to assure Subject reduction (Theorem 72), as shown in Remark 11.

Intuitively, the construct projA∧BC of the latter point selects the component of a pair with type
C ∈ {A,B}. This type-dependency let the non-determinism arise naturally: whenever a term
of the form projA∧AA ((W1,W2)) is reached during the surface reduction, the lack of information
about which component of the pair to select forces a non-deterministic choice in order to break
the “stalemate”, as anticipated in Remark 8.

Definition 47 (The calculi Λ!
⊕ and Λ!

l,⊕).

• An extended value is any term in Λπ that is either a closed and normal term of Λl or a pair
(M,N), with M and N extended values. Extended values are ranged over by W .

• Let V be a denumerable set of variables. The set Λ!
⊕ of terms is generated by the following

grammar:
M := x | λx.M | λ!x.M | MM | !M | d(M) | (M,M)

projA∧BC (M) | copyWA M as x, y in (M,M).
(4.14)

where x, y ∈ V, C ∈ {A,B}, W is an extended value, and A,B ∈ Θ∧,!. With !nM
(resp. dn(M)) we denote ! n. . .!M (resp. d(n. . .d(M) . . .)). We extend both FV (M) and |M |
in Definition 41 to the new clauses as follows:

FV(λ!x.M) = FV(M) \ {x} |λ!x.M | = |M |+ 1

FV(!M) = FV(d(M)) = FV(M) |!M | = |d(M)| = |M |+ 1.

• The meta-level substitution of N for the free occurrences of x in M , written M [N/x], is
defined as usual. We also define a new substitution, called forgetful substitution and written
M{N/x}, as follows:

M{N/x} ,

{
M ′{N ′/x′} if N = !N ′ and M = M ′[d(x)/x′], with x 6∈ FV(M ′),

M [N/x] otherwise.

As usual, M{N/x1, . . . , N/xn} denotes ((M{N/x1}) . . .){N/xn}.

83

• A surface context is a term in Λ!
⊕ containing a unique hole [·], generated by the following

grammar:

C := [·] | λx.C | λ!x.C | CM | MC | d(C) | (C,M) | (M, C) | projA1∧A2

Ai
(C)

copyVA C as x1, x2 in (M1,M2) | copyVAM as x1, x2 in (C, N)

copyVAM as x1, x2 in (N, C).

If C is a surface context and M is a term, then C[M] denotes the term obtained by substi-
tuting the unique hole in C with possible capture of free variables in M .

• The one-step surface reduction relation → between terms in Λ!
⊕ and pair of terms in Λ!

⊕
is defined by the following rules that apply to any surface context:

(λx.M)N →M [N/x]

(λ!x.M)!N →M{!N/x}
projA∧BA (W1,W2)→W1 A 6= B

projA∧BB (W1,W2)→W2 A 6= B

projA∧AA (W1,W2)→W1,W2

copyW
′

A W as x1, x2 in (M1,M2)→ (M1[W/x1],M2[W/x2]).

(4.15)

where M → N is shorthand for M → N,N . A term is in (or is a) surface normal form if
no reduction applies to it. Surface normal forms are ranged over by S.

• Let M ∈ Λ!
⊕. A variable is surface-linear (also s-linear) in M if x occurs exactly once in

M and, moreover, this free occurrence of x lies neither within the scope of a !-operator nor
within the scope of a d-operator in M . We say that M is surface-linear (also s-linear) if:

– for each subterm λx.N of M , x is s-linear in N ;

– for each subterm (N1, N2) of M not in the scope of a copyWA construct, FV (N1) =
FV (N2) = ∅;

– for each subterm copyW
′

A N as x1, x2 in (P1, P2) of M , xi is s-linear in Pi and
FV (P1) = {x1} 6= {x2} = FV (P2).

The set of all s-linear terms in Λ!
⊕ is denoted Λ!

l,⊕. The set of all surface normal forms in
Λ!
l,⊕ will be denoted SNF.

Note that the extended values are terms in Λ!
l,⊕. The following proposition says that reducing

s-linear terms yields s-linear terms:

Proposition 54. If M ∈ Λ!
l,⊕ and M →M ′ then M ′ ∈ Λ!

l,⊕.

Remark 10. Because of the presence of an explicit dereliction d, to define the surface reduction
step for the redex (λ!x.M)!N in (4.15) we introduced a further meta-level substitution,M{N/x},
that we called “forgetful” in Definition 47. As compared to the corresponding surface reduction
step (λ!x.M)!N →! M [N/x] in Simpson’s linear λ-calculus [85] (see Section 2.2.3), the rule
(λ!x.M)!N → M{!N/x} involves a more general mechanism that consumes several occurrences
of both the operators ! and d at a time. As an example, the following:

(λ!x.z d3(x) d(x))(!2y)→ (z d3(x) d2(x)){(!2y)/x}
(
z d3(x) d2(x)

def
= (z d2(x′) d(x′))[d(x)/x′]

)
84

S ∈ SNF

S ⇒ S
s1

M →M1,M2 M1 ⇒ D1 M2 ⇒ D2

M ⇒ 1

2
·D1 +

1

2
·D2

s2

Figure 4.9: Multi-step reduction ⇒ for Λ!
⊕.

= (z d2(x′) d(x′)){(!y)/x′}
(
z d2(x′) d(x′)

def
= (z d(x′′)x′′)[d(x′)/x′′]

)
= (z d(x′′)x′′){y/x′′}
= z d(y) y.

shows an application of this rule to the term (λ!x.z d3(x) d(x))(!2y).

Informally, M → M1,M2 means that M can be evaluated in one step to both M1 and M2

with equal probability 1
2 . We now endow Λ!

⊕ with a probabilistic multi-step reduction relation
giving a formal counterpart to this intuition. This relation cannot be defined by simply taking
the reflexive and transitive closure of →, since a term can reduce in a given number of steps
to several terms with distinct probabilities. The solution is to define a relation between a term
M and a distribution D of surface normal forms, the latter representing the set of all possible
outcomes of the evaluation of M , weighted with the probability of obtaining them.

Definition 48 (Multi-step reduction ⇒).

• A surface distribution is a probability distribution over SNF, i.e. a function D : SNF −→
[0, 1] such that: ∑

S∈SNF

D(S) = 1.

• The multi-step reduction ⇒ is the relation between terms of Λ!
⊕ and surface distributions,

defined by the rules in Figure 4.9.

• We inductively define the size |π| of a derivation π : M ⇒ D as follows:

– if the last rule of π is s1 then |π| , 0;

– otherwise, if the last rule of π is s2:

M →M1,M2 π1 : M1 ⇒ D1 π2 : M2 ⇒ D2
s2

M ⇒ 1
2 ·D1 + 1

2 ·D2

then |π| , max(|π1|, |π2|) + 1.

In Section 2.5.2 we introduced the basic definitions and conventions related to probability
distributions and relations. So, for example, given {S1, . . . , Sn} ⊆ SNF and r1, . . . , rn ∈ [0, 1]
such that

∑n
i=1 ri = 1, the expression r1 · S1 + . . . + rn · Sn means a distribution D such that

D(Si) = ri, for all i ≤ n. Then, S can denote both a surface normal form and a surface
distribution having all its mass in S. Moreover, given two surface distributions D1 and D2, with

85

1
2 ·D1 + 1

2 ·D2 we denote the surface distribution defined, for all S ∈ SNF, by (1
2 ·D1 + 1

2 ·D2)(S) =
1
2 ·D1(S) + 1

2 ·D2(S). Finally, derivations of M ⇒ D are ranged over π, ρ.
In the following we show a derivation of a multi-step reduction. Other derivations can be

found in Example 18.

Example 17. Consider the term (T ⊕ F)TF, where T , λxy.x, F , λxy.y and T ⊕ F ,
projA∧AA (T,F), for some type A. This term reduces to the surface normal forms T and F.
Indeed, (T ⊕ F)TF → TTF,FTF, with TTF → (λy.T)F → T and FTF → (λy.y)F →
F, where we recall that M → N stands for M → N,N . The related multi-step reduction
(T⊕ F)TF⇒ 1

2 ·T + 1
2 · F is the following:

(T⊕ F)TF→ TTF,FTF

TTF→ (λy.T)F

(λy.T)F→ T
s1

T⇒ T
s2

(λy.T)F⇒ T
s2

TTF⇒ T

...
FTF⇒ F

s2
(T⊕ F)TF⇒ 1

2 ·T + 1
2 · F

We can now define the system STA⊕ as follows:

Definition 49 (The system STA⊕). STA⊕ is the type assignment system (in natural deduction
style) for the term calculus Λ!

l,⊕ displayed in Figure 4.10, where the notation λ(!)x.M stands for
λ!x.M if σ is strictly exponential, and λx.M otherwise. The system requires two conditions:

• the type A in ∧I1 must be closed and free from modalities and negative occurrences of ∀;

• Context condition: modalities cannot occur in the contexts of the rules ∧I1 and ∧E.

Let us remark that both conditions we imposed in STA⊕ imply that:

Fact 55. Every type appearing in the rules ∧I0, ∧I1 and ∧E is free from modalities.

The above fact enables us to distinguish two “layers” in a term typable in STA⊕: a low-
level layer concerning the linear additives, where restricted forms of duplication and erasure for
finite data types are permitted, and a top-level layer concerning the exponential rules, where
duplication and erasure can be performed unconditionally.

Remark 11. The introduction of a !-operator requires the use of explicit dereliction in the term
calculus to assure Subject reduction (Theorem 72). Indeed, by ruling out all instances of d in
the inference rules of STA⊕ one can construct the following derivation:

ax
x : A ` x : A sp

x : !!A ` !!x : !!A

ax
y1 : A ` y1 : A

ax
y2 : A ` y2 : A

⊗R
y1 : A, y2 : A ` 〈y1, y2〉 : A⊗A

m
y : !A ` 〈y, y〉 : A⊗A

m
z : !!A ` 〈z, z〉 : A⊗A

(I` λ!z.〈z, z〉 : !!A(A⊗A
(E

x : !!A ` (λ!z.〈z, z〉)!!x : A⊗A

If we apply to (λ!z.〈z, z〉)!!x the surface reduction step (λ!x.M)!N →! M [N/x] in Simpson’s
linear λ-calculus (see Section 2.2.3), we would obtain x : !!A ` 〈!x, !x〉 : A⊗A. However, one can
easily check that this judgement cannot be derived in the system.

We conclude with the following property analogous to Proposition 43:

86

x : A ` x : A
ax

Γ, x : σ `M : B

Γ ` λ(!)x.M : σ(B
(I

Γ `M : σ(B ∆ ` N : σ

Γ,∆ `MN : B
(E

`M1 : B1 `M2 : B2

` (M1,M2) : B1 ∧B2

∧I0
Γ `M : A ∧B C ∈ {A,B}

Γ ` projA∧BC (M) : C
∧E

Γ ` N : A x1 : A `M1 : B1 x2 : A `M2 : B2 `W : A

Γ ` copyWA N as x1, x2 in (M1,M2) : B1 ∧B2

∧I1

x1 : σ1, . . . , xn : σn `M : τ

y1 : !σ1, . . . , yn : !σn ` !M [d(y1)/x1, . . . , d(yn)/xn] : !τ
sp

Γ, x1 : σ, . . . , xn : σ `M : τ (n ≥ 0)

Γ, x : !σ `M [d(x)/x1, . . . , d(x)/xn] : τ
m

Γ `M : A〈γ/α〉 γ 6∈ FV(Γ)

Γ `M : ∀α.A
∀I

Γ `M : ∀α.A
Γ `M : A〈B/α〉

∀E

Figure 4.10: The system STA⊕.

Proposition 56. Let W be an extended value and let A be a closed type free from modalities
and negative occurrences of ∀. If D/ `W : A in STA⊕, then |W | ≤ |A|.

Proof. It suffices to prove by an easy induction on the structure of terms that, for all normal
terms M ∈ Λ!

l,⊕ such that x1 : A1, . . . , xn : An ` M : A, and A (resp. A1, . . . , An) free from !

and from negative occurrences (resp. positive occurrences) of ∀, then |M | ≤
∑n
i=1 |Ai|+ |A|.

4.3 Polytime soundness
In this section we prove that STA⊕ is sound with respect to the polytime Probabilistic Turing
Machines. We essentially adapt to the probabilistic setting the proof techniques developed for
STA in [40], which are well-known since [56].

First, following essentially the same approach of Dal Lago and Toldin in [28], we prove the
confluence of ⇒, i.e. the uniqueness of distributions, for terms in Λ!

l,⊕ (Theorem 64).
Then, we define a notion of “weight” for derivations, and prove a stronger formulation of the

Subject reduction property (Theorem 72), stating that the surface reduction preserves the type
and shrinks the weight of derivations.

This result allows us to polynomially bound the number of the surface reduction steps from a
typable term to surface normal forms (Lemma 75), and hence to prove the Polytime Soundness

87

Theorem (Theorem 76).

4.3.1 Confluence

Probabilistic calculi are not confluent, because a term may reduce to several terms in a single
step. A confluence property can be somehow recovered by looking at the distributions of possible
observables, in our case the surface normal forms, and by proving that a unique distribution can
be associated with each term. However, this is not enough in general, as the example below
shows.

Example 18. Consider the following term in the calculus Λ!
⊕:

coin , (λx.〈x, x〉) ran (4.16)

ran , projB∧B
B (tt, ff) (4.17)

where B, tt, and ff are as in (3.2), and 〈M,N〉 is as in Definition 3. Clearly, coin 6∈ Λ!
l,⊕

because λx.〈x, x〉 is not s-linear. There are two different surface reductions for this term: we
can first reduce ran and then apply λx.〈x, x〉 to the result in order to obtain either 〈tt, tt〉
or 〈ff, ff〉, or we can first apply λx.〈x, x〉 to ran and then reduce each separate copy of ran,
obtaining one among 〈tt, tt〉, 〈tt, ff〉, 〈ff, tt〉, and 〈ff, ff〉. Formally, we have:

coin⇒ 1

2
· 〈tt, tt〉+

1

2
· 〈ff, ff〉

coin⇒ 1

4
· 〈tt, tt〉+

1

4
· 〈tt, ff〉+

1

4
· 〈ff, tt〉+

1

4
· 〈ff, ff〉

whose derivations are in Figure 4.11(a).

The example above shows that there is no chance of associating a unique distribution to terms
in Λ!

⊕. But what about its subset Λ!
l,⊕? We start by considering a s-linear variant of coin in

the following example.

Example 19. The term coin! , (λ!x.〈x, x〉) ! ran is s-linear, hence coin! ∈ Λ!
l,⊕. Moreover, it

is typable in STA⊕, as shown in Figure 4.11(b). We observe that ran is in the scope of “ !”, where
surface reduction is forbidden. This means that we are forced to apply λ!x.〈x, x〉 to ran before
evaluating the latter, thus obtaining 1

4 · 〈tt, tt〉 + 1
4 · 〈tt, ff〉 + 1

4 · 〈ff, tt〉 + 1
4 · 〈ff, ff〉 as the

unique distribution.

Example 19 suggests that s-linearity can be a sufficient condition on Λ!
⊕ to ensure the con-

fluence of ⇒, i.e. that for every term M ∈ Λ!
l,⊕ there is at most one distribution D such that

M ⇒ D . We will show that this is the case by adapting the techniques in Dal Lago and
Toldin [28].

The first step toward confluence is to show that → enjoys a strong confluence property on
Λ!
l,⊕:

Lemma 57. Let M,N ∈ Λ!
l,⊕:

(1) If M →M ′,M ′′ then M{N/x} →M ′{N/x},M ′′{N/x}

(2) If N → N ′, N ′′ and x is linear in M then M [N/x]→M [N ′/x],M [N ′′/x].

Proof. Easy induction on the structure of M .

88

c
o
i
n
→

(λ
x
.〈x
,x
〉)
t
t
,

(λ
x
.〈x
,x
〉)
f
f

(λ
x
.〈x
,x
〉)
t
t
→

t
t

2
t
t

2
⇒

t
t

2

(λ
x
.〈x
,x
〉)
t
t
⇒

t
t

2

(λ
x
.〈x
,x
〉)
f
f
→

f
f

2
f
f

2
⇒

f
f

2

(λ
x
.〈x
,x
〉)
f
f
⇒

f
f

2

c
o
i
n
⇒

1 2
·t
t

2
+

1 2
·f
f

2

c
o
i
n
→

r
a
n

2

r
a
n

2
→
〈t
t
,r
a
n
〉,
〈f
f
,r
a
n
〉
〈t
t
,r
a
n
〉→

t
t

2
,〈
t
t
,f
f
〉
t
t

2
⇒

t
t

2
〈t
t
,f
f
〉⇒
〈t
t
,f
f
〉

〈t
t
,r
a
n
〉⇒

1 2
·t
t

2
+

1 2
·〈
t
t
,f
f
〉

. . .
〈f
f
,r
a
n
〉⇒

1 2
·〈
f
f
,t
t
〉+

1 2
·f
f

2

r
a
n

2
⇒

1 4
·t
t

2
+

1 4
·〈
t
t
,f
f
〉+

1 4
·〈
f
f
,t
t
〉+

1 4
·f
f

2

c
o
i
n
⇒

1 4
·t
t

2
+

1 4
·〈
t
t
,f
f
〉+

1 4
·〈
f
f
,t
t
〉+

1 4
·f
f

2

(a
)
C
ou

nt
er
ex
am

pl
e
to

co
nfl

ue
nc
e
fo
r

Λ
! ⊕
,w

he
re
M

2
,
〈M

,M
〉.

a
x

x
1

:
B
`
x

1
:
B

a
x

x
2

:
B
`
x

2
:
B
⊗
I

x
1

:
B
,x

2
:
B
`
〈x

1
,x

2
〉:

B
⊗

B
m

x
:

!B
`
〈x
,x
〉:

B
⊗

B
(

I
`
λ

!x
.〈x
,x
〉:

!B
(

B
⊗

B

`
t
t

:
B

`
f
f

:
B
∧I

0
`

(t
t
,f
f
)

:
B
∧

B
∧E

`
p
r
o
j

B
∧

B
B

((
t
t
,f
f
))

:
B

sp
`

!(
p
r
o
j

B
∧

B
B

((
t
t
,f
f
))

)
:

!B
(

E
`

(λ
!x
.〈x
,x
〉)

!(
p
r
o
j

B
∧

B
B

((
t
t
,f
f
))

)
:
B
⊗

B

(b
)
A

de
ri
va
ti
on

of
c
o
i
n
!
,

(λ
!x
.〈
x
,x
〉)

!(
p
r
o
j
B
∧
B

B
((
t
t
,f
f
))

).

F
ig
ur
e
4.
11
:
T
he

te
rm

s
c
o
i
n
an

d
c
o
i
n

!.

89

Lemma 58. Let M ∈ Λ!
l,⊕. If M → M ′ and M → M ′′, with M ′ and M ′′ distinct, then there

exists a term N such that M ′ → N and M ′′ → N .

Proof. By induction on the structure of M . We just consider the most interesting cases. If
M = (λx.P)Q → P [Q/x] = M ′, then either M ′′ = (λx.P ′)Q with P → P ′ or M ′′ = (λx.P)Q′

with Q → Q′. Since M is s-linear, x is s-linear in P and hence x does not lie within the
scope of a d-operator. This means that P [Q/x] = P{Q/x} by definition. In the first case, we
have M ′ → P ′[Q/x] by Lemma 57.(1) and also M ′′ → P ′[Q/x]. In the second case, we have
M ′ → P [Q′/x] by Lemma 57.(2), and also M ′′ → P [Q′/x]. Similarly, if M = (λ!x.P)!Q →
P{!Q/x} = M ′ then the only case is M ′′ = (λ!x.P ′)!Q where P → P ′, since reduction is
forbidden in Q. By Lemma 57.(1), M ′ → P ′{!Q/x}, and also M ′′ → P ′{!Q/x}. Last, we
consider the case where M = copyW

′

A W as x1, x2 in (N1, N2), M ′ = (N1[W/x1], N2[W/x2]),
andM ′′ = copyW

′

A W as x1, x2 in (N ′1, N2). SinceM is s-linear, x1 is s-linear in N1 and hence x
does not lie within the scope of a d-operator. This means thatN1[W/x] = N1{W/x} by definition.
ThenM ′ → (N ′1[W/x1], N2[W/x2]) by Lemma 57.(1) and alsoM ′′ → (N ′1[W/x1], N2[W/x2]).

Lemma 59. Let M ∈ Λ!
l,⊕. If M → M ′1,M

′
2 and M → M ′′, with M ′1 and M ′2 distinct, then

there exist terms N1 and N2 such that M ′1 → N1, M ′2 → N2 and M ′′ → N1, N2.

Proof. The proof is by induction on the structure ofM . The only possible situation is when both
the surface reductions M → M ′1,M

′
2 and M → M ′′ are applied in surface contexts C 6= [·], and

we proceed by case analysis. We just consider a possible case. Suppose M = PQ → P ′1Q,P
′
2Q,

where P ′1Q = M ′1 and P ′2Q = M ′2. Then either M ′′ = P ′′Q, where P → P ′′, or M ′′ = PQ′′,
where Q→ Q′′. In the first case we apply the induction hypothesis on P → P ′1, P

′
2 and P → P ′′

and we get that there exist R1 and R2 such that P ′1 → R1, P ′2 → R2 and P ′′ → R1, R2, so that
P ′1Q → R1Q, P ′2Q → R2Q and P ′′Q → R1Q,R2Q. In the second case, we have P ′1Q → P ′1Q

′′,
P ′2Q→ P ′2Q

′′ and PQ′′ → P ′1Q
′′, P ′2Q

′′.

Lemma 60. Let M ∈ Λ!
l,⊕. If M → M ′1,M

′
2 and M → M ′′1 ,M

′′
2 , with M ′1,M

′
2,M

′′
1 ,M

′′
2 all

distinct, then there exist N1, N2, N3, N4 such that M ′1 → N1, N2, M ′2 → N3, N4 and ∃i ∈ {1, 2}
such that M ′′i → N1, N3 and M ′′3−i → N2, N4.

Proof. The proof is by induction on the structure of M . The only possible situation is when
both the surface reductions M → M ′1,M

′
2 and M → M ′′1 ,M

′′
2 are applied in surface contexts

C 6= [·], and we proceed by case analysis. We just consider a possible case. Suppose M =
PQ → P ′1Q,P

′
2Q, where M ′1 = P ′1Q and M ′2 = P ′2Q. Then either M ′′1 = P ′′1 Q, M ′′2 = P ′′2 Q or

M ′′1 = PQ′′1 , M ′′2 = PQ′′2 . In the first case we apply the induction hypothesis on P → P ′1, P
′
2

and P → P ′′1 , P
′′
2 and we have that there exist R1, R2, R3, R4 such that P ′1 → R1, R2, P ′2 →

R3, R4 and ∃i such that P ′′i → R1, R3 and P ′′3−i → R2, R4. Then, we have P ′1Q → R1Q,R2Q,
P ′2Q → R3Q,R4Q, P ′′i Q → R1Q,R3Q, and P ′′3−iQ → R2Q,R4Q. In the second case we have
P ′1Q→ P ′1Q

′′
1 , P

′
1Q
′′
2 , P ′2Q→ P ′2Q

′′
1 , P

′
2Q
′′
2 , PQ′′1 → P ′1Q

′′
1 , P

′
1Q
′′
2 , and PQ′′2 → P ′1Q

′′
2 , P

′
2Q
′′
2 .

It is not trivial to prove the confluence of ⇒. Following Dal Lago and Toldin [28], we
first define a “laxer” probabilistic multi-step reduction relation V (Definition 50), i.e. such that
⇒⊆V, and then we prove two technical results on this relation (Lemma 62 and Lemma 63),
from which we get the confluence of ⇒.

Definition 50 (Multi-step reduction V).

• A term distribution is a probability distribution over Λ!
⊕, i.e. a function D : Λ!

⊕ −→ [0, 1]
such that: ∑

M∈Λ!
⊕

D(M) = 1.

90

M ∈ Λ!
⊕

M VM
t1

M →M1,M2 M1 V D1 M2 V D2

M V
1

2
·D1 +

1

2
·D2

t2

Figure 4.12: Multi-step reduction V for Λ!
⊕.

• The multi-step reduction V is the relation between terms of Λ!
⊕ and term distributions,

defined by the rules in Figure 4.12.

• We inductively define the size |π| of a derivation π : M V D as follows:

– if the last rule of π is t1 then |π| , 0;
– otherwise, if the last rule of π is t2:

M →M1,M2 π1 : M1 V D1 π2 : M2 V D2
t2

M ⇒ 1
2 ·D1 + 1

2 ·D2

then |π| , max(|π1|, |π2|) + 1.

Henceforth, with a little abuse of notation, we shall write |M V D | in place of |π|, whenever
π : M V D .

As in the case of ⇒, we apply the basic definitions and conventions related to probability
distributions and relations of Section 2.5.2.

Notice that the only difference between the relations ⇒ and V is that s1 applies to surface
normal forms only, while t1 applies to all terms. The following states that ⇒⊂V:

Lemma 61. If π : M ⇒ D then there exists a derivation π′ such that π′ : M V D and |π| = |π′|.

The confluence of “V” requires two technical lemmas, following [28]:

Lemma 62. Let M ∈ Λ!
l,⊕. Let M V D be such that D = p1 ·N1 + . . .+pn ·Nn, and let Ni V Ei

for all i ≤ n. Then:

(1) M V
∑n
i=1 pi · Ei

(2) |M V
∑n
i=1 pi · Ei| ≤ |M V D |+ maxni=1 |Ni V Ei|.

Proof. By induction on the structure of the derivation of M V D . If the last rule is t1 then
D = M and there is nothing to prove. If the last rule is t2 then M V D as follows:

M →M1,M2 M1 V D1 M2 V D2
t2

M V 1
2 ·D1 + 1

2 ·D2

We have two cases depending on the first premise. If M1 = M2 then by induction hypothesis on
M1 V D1 there exists M1 V

∑n
i=1 pi · Ei. By applying the rule t2 we get M V

∑n
i=1 pi · Ei.

Otherwise,M1 6= M2. W.l.o.g. let us assume that D1 = 2p1 ·N1+. . .+2po−1 ·No−1+po ·No+. . .+
pm ·Nm and D2 = po ·No+. . .+pm ·Nm+2pm+1 ·Nm+1 +. . .+2pn ·Nn, where 1 ≤ o ≤ m ≤ n. By
applying the induction hypothesis onM1 V D1 andM2 V D2 we have that there existM1 VP1

91

andM2 VP2, where P1 =
∑o−1
i=1 2pi·Ei+

∑m
i=o pi·Ei and P2 =

∑m
i=o pi·Ei+

∑n
i=m+1 2pi·Ei. By

applying rule t2 we haveM V
∑n
i=1 pi·Ei. Concerning the bound on the derivation, the induction

hypothesis on M1 V D1 and M2 V D2 gives |M1 VP1| ≤ |M1 V D1|+ maxmi=1 |Ni V Ei| and
|M2 VP2| ≤ |M1 V D1|+ maxni=o |Ni V Ei|. Then, we have:

|M V
n∑
i=1

pi · Ei|

= max(|M1 VP1|, |M2 VP2|) + 1

≤ max((|M1 V D1|+
m

max
i=1
|Ni V Ei|), (|M2 V D2|+

n
max
i=o
|Ni V Ei|)) + 1

≤ max(|M1 V D1|, |M2 V D2|) + max((
m

max
i=1
|Ni V Ei|), (

n
max
i=o
|Ni V Ei|))) + 1

≤ |M V D |+ n
max
i=1
|Ni V Ei|

This concludes the proof.

Lemma 63. Let M ∈ Λ!
l,⊕. If M V D and M V E , where D = p1 · P1 + . . . + pn · Pn and

E = q1 ·Q1 + . . .+ qm ·Qm, then there exist L1, . . .Ln and F1 . . .Fm such that:

• Pi V Li and Qj V Fj, for all i ≤ n, j ≤ m;

• maxni=1 |Pi V Li| ≤ |M V E | and maxmj=1 |Qj V Fj | ≤ |M V D |;

•
∑n
i=1 pi ·Li =

∑m
j=1 qj ·Fj.

Proof. By induction on |M V D | + |M V E |. If both M V D and M V E end with t1 then
there is nothing to prove. If only one of the derivations end with t1 then we are in the following
case:

M →M1,M2 M1 V D1 M2 V D2
t2

M V 1
2 ·D1 + 1

2 ·D2

t1
M VM

and the result follows. Otherwise, both derivations M V D and M V E end with the rule t2

M →M1,M2 M1 V D1 M2 V D2
t2

M V 1
2 ·D1 + 1

2 ·D2

M → N1, N2 N1 V E1 N2 V E2
t2

M V 1
2 · E1 + 1

2 · E2

Clearly, if M1,M2 is equal to N1, N2 (modulo sort) then we apply the induction hypothesis and
we are done. So let us suppose that M1,M2 and N1, N2 are different. We have four cases:

• If M1 = M2 and N1 = N2 then by Lemma 58 there exists L such that M1 → L and
N1 → L. By using the rule t1 we get L V L. By induction hypothesis on M1 V D1

and L V L there exist L1, . . . ,Ln and K such that, for all i ≤ n, Pi V Li, L V K ,
maxni=1(|Pi V Li|) ≤ |M V L|, |L V K | ≤ |M V D |, and

∑n
i=1 pi ·Li = K . Similarly,

we have that there exists F1, . . . ,Fm,H such that, for all i ≤ m, Qi V Fi, L V H ,
maxmi=1(|Qi V Fi|) ≤ |M V L|, |L V H | ≤ |M V E |, and

∑m
i=1 qi · Fi = H . We

obtain |L V K | + |L V H | ≤ |M V D | + |M V E |. Let K = r1 · R1 + . . . + rh · Rh
and H = s1 · S1 + . . . + sk · Sk. We apply the induction hypothesis and we obtain that
there exist R1, . . . ,Rh,S1, . . . ,Sk such that Ri V Ri and Sj V Sj for all i ≤ h and
j ≤ k. Moreover, maxhi=1(|Ri V Ri|) ≤ |L V H |, maxkk=1(|Sj V Sj |) ≤ |L V K |, and∑h
i=1 ri · Ri =

∑k
j=1 sj · Sj .Notice that the cardinality of D and K may differ but for

sure they have the same terms with non zero probability. Similar, E and H have the same

92

terms with non zero probability. By using Lemma 62 and using the transitive property
of equality we obtain that

∑n
i=1 pi · Ri =

∑n
i=1 ri · Ri =

∑m
j=1 sj · Sj =

∑m
j=1 qj · Sj .

Moreover, we have
n

max
i=1

(|Pi V Ri|) ≤ |LVH | ≤ |M V E |
m

max
j=1

(|Qj V Sj |) ≤ |LV K | ≤ |M V D |.

• If M1 6= M2 and N1 = N2 then by Lemma 59 there exists L1, L2 such that M1 → L1,
M2 → L2 and N1 → L1, L2. W.l.o.g. we can assume that D1 = 2p1 · P1 + . . . + 2po−1 ·
Po−1 + po · Po + . . .+ pt · Pt and D2 = po · Po + . . .+ ph · Ph + 2pt+1 · Pt+1 + . . .+ 2pn · Pn
where 1 ≤ o ≤ t ≤ n.By using the induction rule, we associate with every Li a distribution
Pi such that L1 V P1 and L2 V P2. Let P1 = r1 · R1 + . . . + rh · Rh and P2 =
s1 · S1 + . . . + sk · Sk. So, we have, for all i, Mi V Di and Mi V Pi, N1 V E and
N1 V 1

2 ·P1 + 1
2 ·P2. By applying the induction hypothesis on all the three cases we have

that there exist L1, . . . ,Ln,F1, . . . ,Fm,K ,H ,R,S such that P1 V L1, . . . , Pn V Ln,
Q1 V F1, . . . , Pm V Fm, L1 V K , L2 VH , L1 V R, and L2 V S . Moreover:

1. max1≤i≤t(|Pi V Li|) ≤ |M1 V P1|, |L1 V K | ≤ |M1 V D1|, and
∑o−1
i=1 2pi ·Li +∑t

i=o pi ·Li = K .

2. maxo≤i≤n(|P1 V Li|) ≤ |M2 V P2|, |L2 V H | ≤ |M2 V D2|, and
∑t
i=o pi ·Li +∑n

i=t+1 2pi ·Li = H .

3. maxmj=1(|Qj V Fj |) ≤ |N1 V 1
2 ·P1+ 1

2 ·P2|, max(|L1 V R|, |L2 V S |) ≤ |N1 V E |,
and

∑m
j=1 qj ·Fj = 1

2 ·R + 1
2 ·S .

Notice that |L1 V R|+ |L1 V K | < |M V D |+ |M V E |. Moreover, notice also that the
following inequality holds: |L2 V S |+ |L2 VH | < |M V D |+ |M V E |. We are allowed
to apply, again, induction hypothesis and have a confluent distribution for both cases.
Lemma 62 then allows us to connect the first two main derivations and by transitivive
property of equality we have the thesis.

• The case M1 = M2 and N1 6= N2 and the case M1 6= M2 and N1 6= N2 are similar by
using, respectively, Lemma 59 and Lemma 60.

Theorem 64 (Confluence for ⇒). Let M ∈ Λ!
l,⊕. If M ⇒ D and M ⇒ E then D = E .

Proof. Since ⇒⊆V, we have M V D and M V E . By Lemma 63, D = E .

4.3.2 Weighted subject reduction
In the previous subsection we have shown that for each term M ∈ Λ!

l,⊕ there exists at most one
surface distribution D such that M ⇒ D (Theorem 64), so the relation ⇒ is always well-defined
in Λ!

l,⊕. However, not all terms of Λ!
l,⊕ can be put in relation with a surface distribution, as the

following example shows.

Example 20. Consider the terms ∆! , λ!x.d(x)!d(x) and Ω! , ∆!(!∆!) in Λ!
l,⊕. By applying

a surface reduction step to Ω! we have:

Ω! → (d(x)!d(x)){!∆!/x}
= ((y !y)[d(x)/y]){!∆!/x} = Ω!

hence Ω! reduces to itself.

93

We now show that, as long as we restrict to terms M typable in STA⊕, there always exists at
least one surface distribution D such that M ⇒ D (Theorem 72): we first associate with each
term of Λ!

l,⊕ a “weight”, and then we prove that reducing a typable term yields a typable term
with strictly smaller weight. Actually, this result is nothing more than a stronger version of the
Subject reduction property.

To begin with, we introduce some basic definitions from [56, 40], together with the new notion
of “co-rank”. The latter plays a role in the definition of weight, and is due to the presence of
explicit constructs ! and d, which affect the size of a term.

Definition 51 (Rank, co-rank, weight, depth).

• The rank of a rule m of the form:

Γ, x1 : σ, . . . , xn : σ `M : τ (n ≥ 0)
m

Γ, x : !σ `M [d(x)/x1, . . . , d(x)/xn] : τ

is the number k ≤ n of variables xi such that xi ∈ FV(M). If D is a derivation, the rank
of D, written rk(D), is max(1, k), where k is the maximum rank among the applications of
the rule m in D.

• The co-rank of a rule sp of the form:

x1 : σ1, . . . , xn : σn `M : τ
sp

y1 : !σ1, . . . , yn : !σn ` !M [d(y1)/x1, . . . , d(yn)/yn] : τ

is the number k ≤ n of variables xi such that xi ∈ FV(M).

• Let n ≥ 1. The weight of a derivation D with respect to n, written w(D, n), is defined by
induction on the structure of D as follows:

– if the last rule is ax then w(D, n) = 1;

– if the last rule is(R or ∧E with premise a derivation D′ then w(D, n) = w(D′, n)+1;

– if the last rule is (E or ∧I0 with premises D′ and D′′ then w(D, n) = w(D′, n) +
w(D′′, n) + 1;

– if the last rule is ∧I1 with premises, respectively, D1, D2, D3, D4, then w(D, n) =
w(D1, n) + w(D2, n) + w(D3, n) + w(D4, n) + 2;

– if the last rule is ∀I, or ∀E with premise D′ then w(D, n) = w(D′, n);

– if the last rule is sp with premise D′ and co-rank k then w(D, n) = n·(w(D′, n)+k)+1;

– if the last rule is m with premise D′ and rank k then w(D, n) = w(D′, n) + k.

• The depth of a derivation D, denoted d(D), is the maximal number of nesting of applications
of the sp rule in D, i.e. the maximal number of applications of the sp rule in a path
connecting the conclusion and one axiom in D.

Following [40], we state and prove the basic properties relating rank, size and weight.

Lemma 65. Let n ≥ 1, and let D / Γ `STA⊕ M : σ. Then:

(1) rk(D) ≤ |M |;

(2) w(D, n) ≤ nd(D) · w(D, 1);

94

(3) w(D, 1) = |M |. If, moreover, D is free from applications of sp and m, then w(D, n) = |M |.

Proof. By induction on the structure of D. Point (1) and point (3) are straightforward. Con-
cerning point (2), we consider the most interesting case in which D has been obtained from a
derivation D′ by applying the rule sp with co-rank k. By using the induction hypothesis, we
have:

w(D, n) = n · (w(D′, n) + k) + 1

≤ n · (nd(D′) · w(D′, 1) + k) + 1

≤ n · (nd(D′) · w(D′, 1) + nd(D′) · k) + nd(D′)+1

≤ nd(D′)+1 · (w(D′, 1) + k + 1) = nd(D) · w(D, 1).

The Subject reduction property requires some technical, standard results. First, we notice
that substituting some applications of the rule ax with others applications of the same rule does
not affect the weight of the derivation:

Lemma 66. For every type A, if D / Γ `M : τ then there exits D′ such that D′ / Γ[A/α] `M :
τ [A/α] and w(D, n) = w(D′, n).

In analogy with [40], so relying on the structure of the essential types, by inspecting the rules
of STA⊕ it holds:

Lemma 67.

(1) If D / Γ ` M : !σ then D has been obtained from a derivation D′ by applying the rule sp,
followed by some applications of the rule m. Hence, Γ is a strictly exponential context and
M = !M ′, for some M ′.

(2) If D /Γ, x : !σ `M : τ . Then, either x : !σ has been introduced by a sp rule or by a m rule.

Lemma 68 (Generation).

(1) If D / Γ ` x : σ then σ = ∀~α.(B〈D1/β1, . . . , Dn/βn〉) and D is an instance of ax with
conclusion x : B ` x : B followed by a sequence of ∀I and ∀E, where ~α = α1, . . . , αk, for
some k ≥ 0.

(2) If D/Γ ` λ(!)x.M : σ then σ = ∀~α.((τ (A)〈D1/β1, . . . , Dn/βn〉) and D is some D′ /Γ, x :
τ ` M ′ : A followed by (I and a sequence of ∀I, ∀E, and m where ~α = α1, . . . , αk, for
some k ≥ 0.

(3) If D / Γ ` MN : σ then σ = ∀~α.(A〈D1/β1, . . . , Dn/βn〉) and D is some D′ / Γ′ ` M ′ :
τ (A and D′′ / Γ′′ ` N ′ : τ followed by (E and a sequence of ∀I, ∀E, and m, where
~α = α1, . . . , αk and k ≥ 0.

(4) If D /Γ ` copyWA N as x1, x2 in (M1,M2) : σ, then σ = B1 ∧B2 and D is ∧I1 followed by
a sequence of applications of the rule m.

(5) If D / Γ ` (M1,M2) : σ then σ = B1 ∧ B2 and D is D′/ ` M ′1 : B1 and D′′/ ` M ′2 : B2

followed by ∧I0 and a sequence of m with rank 0 introducing the context Γ.

(6) If D / Γ ` projB1∧B2

Bi
(M) : σ then σ = ∀~α.(Bi〈D1/β1, . . . , Dn/βn〉), and D is D′ / Γ′ `

M ′ : B1 ∧ B2 followed by ∧E and a sequence of ∀I, ∀E, and m, where ~α = α1, . . . , αk, for
some k ≥ 0.

95

(7) If D / Γ ` !M : σ then σ = !σ′, Γ is an strictly exponential context, and D is sp, followed
by some applications of the rule m.

Proof. Points (1)-(6) are an easy generalization of Lemma 44. Point (7) is straightforward.

Following Gaboardi and Ronchi [40], we prove a “weighted” formulation of the substitution
property. Since we work with two kinds of types, namely the linear and the strictly exponential
ones, we split the task. First we consider a substitution theorem for to linear types, i.e. those
with form A. Then we generalize the statement to arbitrary types, i.e. those with form σ.

Lemma 69. If D / Γ, x : A `M : τ then x is s-linear in M .

Proof. Straightforward.

Lemma 70 (Weighted linear substitution). Let n ≥ 1. If D1 / Γ, x : A ` M : τ and D2 / ∆ `
N : A, then there exists a derivation S(D1,D2) such that:

• S(D1,D2) / Γ,∆ `M [N/x] : τ ,

• w(S(D1,D2), n) ≤ w(D1, n) + w(D2, n).

Proof. By Lemma 69, x is s-linear in M , i.e. x occurs exactly once in M and this occurrence is
out of the scope of both a !-operator and a d-operator. The statement is proved by induction on
D1. The cases were the last rule is ax,(I,(E, ∧I0, ∧I1, ∀I, ∀E, and m are easy. Now, suppose
D1 is of the form:

D′ / Γ, x : A ` P : B D′′ / x1 : B ` Q1 : C1 D′′′ / x2 : B ` Q2 : C2 D′′′′/ `W : B
∧I1

Γ, x : A ` copyWB P as x1, x2 in (Q1, Q2) : C1 ∧ C2

so that τ = C1 ∧ C2 and M = copyWB P as x1, x2 in (Q1, Q2). By induction hypothesis, there
exists S(D′,D2) / Γ ` P [N/x] : A such that w(S(D′,D2), n) ≤ w(D′, n) + w(D2, n). We define
S(D1,D2) / Γ,∆ ` copyWB P [N/x] as x1, x2 in (Q1, Q2) : C1 ∧ C2 as the derivation obtained by
applying ∧I1 to S(D′,D2), D′′, D′′′, D′′′′. Moreover, by using the induction hypothesis, we have:

w(S(D1,D2), n) = w(S(D′,D2), n) + w(D′′, n) + w(D′′′, n) + w(D′′′′, n) + 2

≤ w(D′, n) + w(D′′, n) + w(D′′′, n) + w(D′′′′, n) + w(D2, n) + 2

= w(D1, n) + w(D2, n).

Last, since A is a linear type, the last rule of D1 cannot be sp.

Lemma 71 (Weighted substitution). Let r ≥ rk(D1). If D1/Γ, x : σ `M : τ and D2/∆ ` N : σ,
then there exists a derivation S(D1,D2) such that:

• S(D1,D2) / Γ,∆ `M{N/x} : τ ,

• w(S(D1,D2), r) ≤ w(D1, r) + w(D2, r).

Proof. Since σ = !qA, for some linear type A and some q ≥ 0, we reason by induction on q. If
q = 0 then, by Lemma 69, x is s-linear in M , i.e. x occurs exactly once in M and this occurrence
is out of the scope of both a !-operator and a d-operator. This means that M{N/x} = M [N/x],
and we can apply Lemma 70. Suppose now that σ = !σ′. On the one hand, by Lemma 67.(1) we
have that ∆ is strictly exponential, N = !P , and D2 is composed by a subderivation D∗2 of the
form:

96

D′2
∆′ ` P ′ : σ′ sp

!∆′ ` !P ′[d(z1)/y1, . . . , d(zm)/ym] : !σ′

with co-rank h and such that ∆′ = y1 : σ1, . . . , ym : σm, followed by a sequence of t ≥ 0 rules
m with rank, respectively, k1, . . . , kt recovering ∆ ` !P : !σ′. On the other hand, by applying
Lemma 67.(2), the assumption x : !σ′ in D1 / Γ, x : !σ′ ` M : τ has been obtained by applying
in D either the rule sp or the rule m. We just consider the latter case, the former being similar.
W.l.o.g. we can suppose that such an instance of m is the last rule of D1, since we can always
permute an application of m downward obtaining a derivation of the same judgement. Then, D1

has the following form:

D′1
Γ, x1 : σ′, . . . , xn : σ′ `M ′ : τ (n ≥ 0)

m
Γ, x : !σ′ `M ′[d(x)/x1, . . . , d(x)/xn] : τ

with rank k and such thatM = M ′[d(x)/x1, . . . , d(x)/xn]. If k = 0 then S(D1,D2) is D′1 followed
by some applications of the m rule with rank 0 in order to recover the context ∆, which is strictly
exponential by Lemma 67.(1). In this case, we have w(S(D1,D2), r) = w(D′1, r). Otherwise, by
using the induction hypothesis, we can build the following derivations:

S1 , S(D′2,D′1) / Γ,∆′, x2 : σ′, . . . , xn : σ′ `M ′{P ′/x1} : τ

S2 , S(D′2, S(D′2,D′1)) / Γ,∆′,∆′, x3 : σ′, . . . , xn : σ′ `M ′{P ′/x1, P
′/x2} : τ

. . .

Sn , S(D′2, S(D′2, . . . S(D′2,D′1))) / Γ,∆′, n. . .,∆′ `M ′{P ′/x1, . . . , P
′/xn} : τ.

such that w(S1, r) ≤ w(D′2) + w(D′1) and, for all 1 ≤ i < n, w(Si+1, r) ≤ w(D′2, r) + w(Si, r) ≤
w(D′1, r)+(i+1) ·w(D′2, r). Then, S(D1,D2) can be obtained from Sn by applying a sequence of
h applications of the rule m with rank k, and a sequence of t applications of the rule m with rank,
respectively, k1, . . . , kt, in order to get ∆ from ∆′, n. . .,∆′. This means that S(D1,D2) / Γ,∆ `
M ′{P/x1, . . . , P/xn} : τ and, by definition of forgetful substitution:

M ′{P/x1, . . . , P/xn} = (M ′[z/x1, . . . , z/xn]){P/z}
= ((M ′[z/x1, . . . , z/xn])[d(x)/z])){!P/x} x 6∈ FV (M ′)

= (M ′[d(x)/x1, . . . , d(x)/xn]){!P/x} = M{N/x}.

By using the induction hypothesis, we finally have:

w(S(D1,D2), r) = w(Sn, r) + k · h+

t∑
i=1

ki

≤ w(D′1, r) + k · w(D′2, r) + k · h+

t∑
i=1

ki

≤ w(D′1, r) + r · w(D′2, r) + r · h+

t∑
i=1

ki

≤ w(D1, r) + (r · (w(D′2, r) + h) + 1 +

t∑
i=1

ki)

97

= w(D1, r) + (w(D∗2 , r) +

t∑
i=1

ki)

≤ w(D1, r) + w(D2, r).

This concludes the proof.

We are now able to state the weighted version of the subject reduction property:

Theorem 72 (Weighted subject reduction). Let D / Γ ` M : σ and let r ≥ rk(D). If M →
M1,M2 then there exist D1 and D2 such that:

• Di / Γ `Mi : σ,

• w(Di, r) < w(D, r), for i ∈ {1, 2}.

Proof. The proof is by induction on the definition of the one-step reduction relation. We have
several cases, and we consider the most interesting ones:

• If M = (λ!x.N)!P → N{!P/x} = M1 = M2 then, by applying Lemma 68.(2) and
Lemma 68.(3), D contains a derivation D∗ of the form:

D′
Γ′, x : τ ` N ′ : A

(I
Γ′ ` λ!x.N ′ : τ (A

D′′
Γ′′ ` !P ′ : τ

(E
Γ′,Γ′′ ` (λ!x.N ′)!P ′ : A

possibly followed by a sequence of applications of the rules ∀I, ∀E, and m. Let t ≥ 0 be the
number of applications of the rulem, and let k1, . . . , kt be their respective rank. By applying
Lemma 71, there exists a derivation S(D′,D′′) such that S(D′,D′′)/Γ′,Γ′′ ` N ′{!P ′/x} : A.
We define D1 = D2 as the derivation obtained by applying to S(D′,D′′) a sequence of
applications of the rules ∀I, ∀E, and m in order to obtain Γ ` N{!P/x} : σ as a concluding
judgement. By Lemma 71, we have:

w(D1, r) = w(S(D′,D′′), r) +

t∑
j=1

kj ≤ w(D′, r) + w(D′′, r) +

t∑
j=1

kj

< w(D′, r) + w(D′′, r) +
t∑

j=1

kj + 2 = w(D, r).

• If M = projB∧BB (W1,W2) → W1 = M1 and M = projB∧BB (W1,W2) → W2 = M2. By
applying Lemma 44.(5)-(6), σ = ∀~α.(B′〈D1/β1, . . . , Dn/βn〉), where ~α = α1, . . . , αk, for
some k ≥ 0. Moreover, D is a derivation D∗ of the form:

D′
`W1 : B

D′′
`W2 : B

∧I0` (W1,W2) : B ∧B
∧E

` projB∧BB (W1,W2) : B

followed by a sequence of applications of the rules ∀I, ∀E, and m. Then, we define D1

(resp. D2) as the derivation D′ (resp. D′′) followed by the same sequence of rules ∀I, ∀E,
and m, the latter being of rank 0 and introducing the context Γ. By definition of weight,
we have: w(D1, r) = w(D′, r) < w(D, r), and similarly for D2.

98

• If M = copyW
′

A W as x1, x2 in (Q1, Q2) → (Q1[W/x1], Q2[W/x2]) = M1 = M2 then, by
Lemma 68.(4), σ = B1 ∧B2 and D is a derivation D∗ of the form:

D′
Γ′ `W : A

D′′
x1 : A ` Q1 : B1

D′′′
x2 : A ` Q2 : B2

D′′′′
`W ′ : A

∧I1
Γ′ ` copyW ′A W as x1, x2 in (Q1, Q2) : B1 ∧B2

followed by a sequence of applications of the rule m. By Fact 55, Γ′ is !-free, and hence
all types in Γ′ are linear. Then, since W is closed, Lemma 69 implies Γ′ = ∅. Therefore,
the applications of the rule m below D∗ are all of rank 0, so that w(D, r) = w(D∗, r).
By applying Lemma 70 twice, there exist two derivations S(D′,D′′)/ ` Q1[W/x1] : B1

and S(D′,D′′′)/ ` Q2[W/x2] : B2 such that w(S(D′,D′′), r) ≤ w(D′, r) + w(D′′, r) and
w(S(D′,D′′′), r) ≤ w(D′, r) + w(D′′′, r). We define D1 = D2 as the following derivation:

S(D′,D′′)
` Q1[W/x1] : B1

S(D′,D′′′)
` Q2[W/x2] : B2 ∧I0` (Q1[W/x1], Q2[W/x2]) : B1 ∧B2

m
Γ ` (Q1[W/x1], Q2[W/x2]) : B1 ∧B2

By Proposition 56, we can safely assume that W ′ has largest size among the extended
values with type A. Moreover, D′ and D′′′ have no application of the rules sp and m so
that, by Lemma 65.(3), w(D′, r) = |W | ≤ |W ′| = w(D′′′′, r). Therefore:

w(D1, r) = w(S(D′,D′′), r) + w(S(D′,D′′′), r) + 1

≤ 2 · w(D′, r) + w(D′′, r) + w(D′′′) + 1

≤ w(D′, r) + w(D′′, r) + w(D′′′, r) + w(D′′′′) + 1

< w(D′, r) + w(D′′, r) + w(D′′′, r) + w(D′′′′) + 2 = w(D∗, r) = w(D, r).

This concludes the proof.

Corollary 73 (Unique surface distribution in STA⊕). Let D / Γ ` M : σ in STA⊕. Then there
exists a unique surface distribution D such that M ⇒ D .

Proof. Let r ≥ rk(D). We prove by induction on w(D, r) that a derivation π : M ⇒ D exists,
for some π and D . If M ∈ SNF then, by applying rule s1, we have M ⇒ M . Otherwise,
M →M1,M2, for someM1 andM2. By Theorem 72 there exist D1, D2 such that Di /Γ `Mi : σ
and w(Di, r) < w(D, r), for all i ∈ {1, 2}. By applying the induction hypothesis, we have
π1 : M1 ⇒ D1 and π2 : M2 ⇒ D2, for some π1, π2, D1, and D2. Finally, by applying rule s2:

M →M1,M2 π1 : M1 ⇒ D1 π2 : M2 ⇒ D2
s2

M ⇒ 1
2 ·D1 + 1

2 ·D2

Hence, for allM ∈ Λ!
l,⊕ typable in STA⊕ there exists a surface distribution D such thatM ⇒ D ,

which is unique by Theorem 64.

99

4.3.3 The Polytime Soundness Theorem
In defining the surface reduction for Λ!

l,⊕, we first introduced the one-step relation → between
terms and pairs of terms, and then we lifted it to a relation ⇒ between terms and distributions,
essentially by turning projA∧AA (W1,W2)→W1,W2 into projA∧AA (W1,W2)⇒ 1

2 ·W1 + 1
2 ·W2.

Beside non-determinism, another important aspect of → is that it allows for different surface
reduction strategies, as the following example shows.

Example 21. Consider the term M , (λ!x.〈ran, d(x)〉)!I, where ran is as in (4.17). If we first
apply surface reduction to the innermost redex ran we obtain the pair of terms (λ!x.〈tt, d(x)〉)!I
and (λ!x.〈ff, d(x)〉)!I, that reduce in a single step to 〈tt, I〉 and 〈ff, I〉, respectively. If on
the other hand we first apply the surface reduction to the outermost redex we obtain 〈ran, I〉,
that reduces in one step either to 〈tt, I〉 or to 〈ff, I〉. Both surface reduction strategies are
diagrammatically represented in Figure 4.13(a). For each such strategy is associated a derivation
of M ⇒ 1

2 · 〈tt, I〉+ 1
2 · 〈ff, I〉, as shown in Figure 4.13(b).

The example above shows that different surface reduction strategies can be applied to a term
M ∈ Λ!

l,⊕. Moreover, if M ⇒ D holds for some surface distribution D (unique by Theorem 64),
each surface reduction strategy corresponds to a specific derivation of M ⇒ D . We are going to
prove that, at least when M is typable in STA⊕, all such derivations have the same size:

Lemma 74. Let Γ `M : σ in STA⊕. If π′ : M ⇒ D and π′′ : M ⇒ D , then |π′| = |π′′|.

Proof. The proof is by induction on |π′| + |π′′|. If the last rule of π′ is s1 then M is a surface
normal form, and the last rule of π′′ must be s1. In this case, |π′| = 0 = |π′′|. If the last rule of
π′ is s2, then M is not a surface normal form, so that the last rule of π′′ is s2. Hence, π′ and π′′
have the following forms:

M →M ′1,M
′
2 π′1 : M ′1 ⇒ D ′1 π′2 : M ′2 ⇒ D ′2

π′ : M ⇒ D
s2

M →M ′′1 ,M
′′
2 π′′1 : M ′′1 ⇒ D ′′1 π′′2 : M ′′2 ⇒ D ′′2

π′′ : M ⇒ D
s2

We have several possibilities depending on M ′1,M
′
2,M

′′
1 ,M

′′
2 . We just consider the case where

they are all distinct. By applying Lemma 60 there exist N1, N2, N3, N4 such that M ′1 → N1, N2,
M ′2 → N3, N4 and ∃i ∈ {1, 2} such that M ′′i → N1, N3 and M ′′3−i → N2, N4. Let us suppose
i = 1. By Theorem 72 N1, N2, N3 and N4 are all typable in STA⊕, and by Corollary 73, for
all 1 ≤ j ≤ 4, we have ρj : Nj ⇒ Ej , for some ρj and Ej . Then, we can construct the following
derivations:

M ′1 → N1, N2 ρ1 : N1 ⇒ E1 ρ2 : N2 ⇒ E2

ρ′1 : M ′1 ⇒ D ′1
s2

M ′2 → N3, N4 ρ3 : N3 ⇒ E3 ρ4 : N4 ⇒ E4

ρ′2 : M ′2 ⇒ D ′2
s2

M ′′1 → N1, N3 ρ1 : N1 ⇒ E1 ρ3 : N3 ⇒ E3

ρ′′1 : M ′′1 ⇒ D ′′1
s2

M ′′2 → N2, N4 ρ2 : N2 ⇒ E2 ρ4 : N4 ⇒ E4

ρ′′2 : M ′′2 ⇒ D ′′2
s2

100

(λ
!x
.〈t

t
,d

(x
)〉

)!
I

(λ
!x
.〈f

f
,d

(x
)〉

)!
I

〈f
f
,I
〉

(λ
!x
.〈r

a
n
,d

(x
)〉

)!
I

〈r
a
n
,I
〉

〈t
t
,I
〉

(a
)
D
iff
er
en
t
su
rf
ac
e
re
du

ct
io
n
st
ra
te
gi
es

fo
r

(λ
!x
.〈
r
a
n
,d

(x
)〉

)!
I.

(λ
!x
.〈r

a
n
,d

(x
)〉

)!
I
→

(λ
!x
.〈t

t
,d

(x
)〉

)!
I,

(λ
!x
.〈f

f
,d

(x
)〉

)!
I

(λ
!x
.〈t

t
,d

(x
)〉

)!
I
→
〈t
t
,I
〉
〈t
t
,I
〉⇒
〈t
t
,I
〉

(λ
!x
.〈t

t
,d

(x
)〉

)!
I
⇒
〈t
t
,I
〉

. . .
(λ

!x
.〈f

f
,d

(x
)〉

)!
I
⇒
〈f
f
,I
〉

(λ
!x
.〈r

a
n
,d

(x
)〉

)!
I
⇒

1 2
·〈
t
t
,I
〉+

1 2
·〈
f
f
,I
〉

(λ
!x
.〈r

a
n
,d

(x
)〉

)!
I
→
〈r
a
n
,I
〉
〈r
a
n
,I
〉→
〈t
t
,I
〉,
〈f
f
,I
〉
〈t
t
,I
〉⇒
〈t
t
,I
〉
〈f
f
,I
〉⇒
〈f
f
,I
〉

〈r
a
n
,I
〉⇒

1 2
·〈
t
t
,I
〉+

1 2
·〈
f
f
,I
〉

(λ
!x
.〈r

a
n
,d

(x
)〉

)!
I
⇒

1 2
·〈
t
t
,I
〉+

1 2
·〈
f
f
,I
〉

(b
)
D
iff
er
en
t
de

ri
va
ti
on

s
of

(λ
!x
.〈
r
a
n
,d

(x
)〉

)!
I
⇒

1 2
·〈
t
t
,I
〉+

1 2
·〈
f
f
,I
〉.

F
ig
ur
e
4.
13
:
T
he

te
rm

(λ
!x
.〈r

a
n
,d

(x
)〉

)!
I.

101

By applying the induction hypothesis we have:

|π′| = max(|π′1|, |π′2|) + 1

= max(|ρ′1|, |ρ′2|) + 1

= max(max(|ρ1|, |ρ2|) + 1,max(|ρ3|, |ρ4|) + 1) + 1

= max(max(|ρ1|, |ρ3|) + 1,max(|ρ2|, |ρ4|) + 1) + 1

= max(|ρ′′1 |, |ρ′′2 |) + 1

= max(|π′′1 |, |π′′2 |) + 1 = |π′′|.

The remaining cases are similar.

Remark 12. Consider two surface reduction strategies R and R′ applied to some M ∈ Λ!
l,⊕

typable in STA⊕ and such that all non-deterministic branches in R and R′ reach a surface
normal form. Lemma 74 says that, whenever n (resp. m) is the supremum of the set of the
lengths of all non-deterministic branches of R (resp. R′), it must be n = m. This property
depends on the fact that reduction is performed at a “surface level”, namely out of the scope of
any !, so that the reducts (i.e. the expressions to which redexes reduces) are never duplicable
or erasable. A similar uniformity property holds in Simpson’s linear λ-calculus, stating that all
surface reductions strategies reaching a surface normal form starting from a given term M have
the same length (see Section 2.2.3).

The lemma above allows us to speak about the “size” of M ⇒ D . By Remark 12, the size of
M ⇒ D gives an upper bound on the length of each non-deterministic branching of all possible
reduction strategies applied toM . We now prove that such a bound can be taken as a polynomial
in the size of M , from which we shall infer the Polytime Soundness Theorem (Theorem 76).

Lemma 75 (Strong polystep soundness). Let D / Γ `STA⊕ M : σ and let π : M ⇒ D . Then:

(1) |π| ≤ |M |d(D)+1.

(2) For every reduction step N → N ′, N ′′ that is premise of a rule s2 in π, |N | ≤ |M |d(D)+1.

Proof. Let D / Γ `M : σ. First, we observe that:

w(D, rk(D)) ≤ w(D, |M |) Lem. 65.(1)

≤ |M |d(D) · w(D, 1) Lem. 65.(2)

= |M |d(D) · |M | = |M |d(D)+1. Lem. 65.(3)

Thus, to show both points, it suffices to prove by induction on the size of π : M ⇒ D that, for
all r ≥ rk(D):

(i) |π| ≤ w(D, r);

(ii) for every reduction step N → N ′, N ′′ that is premise of a rule s2 in π, |N | ≤ w(D, r).

If the last rule of π is s1 then both points hold trivially. Otherwise, it ends with s2:

M →M1,M2 π1 : M1 ⇒ D1 π2 : M2 ⇒ D2
s2

M ⇒ 1
2 ·D1 + 1

2 ·D2

102

By Theorem 72, there exist D1 and D2 such that Di /Γ `Mi : σ and w(Di, r) < w(D, r). As for
point (i), by induction hypothesis, |πi| ≤ w(Di, r), with i ∈ {1, 2}. Hence, we have:

|π| = max(|π1|, |π2|) + 1

≤ max(w(D1, r),w(D2, r)) + 1

≤ w(D, r).

Concerning point (ii), by applying the induction hypothesis, for all i ∈ {1, 2} and for all N →
N ′i , N

′′
i premise of a s2 in πi, |N | ≤ w(Di, r) < w(D, r). Moreover, by Lemma 65.(3), we have

|M | = w(D, 1) ≤ w(D, r).

Turing Machines are defined in Section 2.3.1. We now briefly recall their randomized formu-
lations:

Definition 52 (Probabilistic Turing Machines). A Probabilistic Turing Machine , PTM for short,
is a Turing Machine with two transition functions δ0 and δ1, i.e. it is a tuple P , (Γ, Q, δ0, δ1)
such that both (Γ, Q, δ0) and (Γ, Q, δ1) are Turing Machines. At each step in the computation
the PTM chooses randomly which one of the transition functions δ0 and δ1 to apply (with equal
probability 1

2).

Definition 53. Let P be a PTM, and let T : N −→ N be a function:

• we say that P runs in T (n)-time if its computation on every input x requires at most
T (|x|) steps, regardless of its random choices;

• we say that P runs in T (n)-space if its computation on every input x requires at most
T (|x|) cells of the tape, regardless of its random choices;

Remark 13. As pointed in [88], a β-reduction step M →β M ′ can be simulated by a Turing
Machine running in O(|M |2)-time. In a similar way, given a one-step reduction M → M1,M2

in (4.15), we can build a PTM running in O(|M |2)-time that, when receiving in input (an
encoding of) M , produces in output (an encoding of) Mi with probability a half.

We can now prove that STA⊕ is sound with respect to the polynomial time PTMs.

Theorem 76 (Polytime soundness). Let D / Γ ` M : σ be such that π : M ⇒ D . Then there
exists a PTM that runs in O(|M |3(d(D)+1))-time such that, for all S ∈ supp(D) with D(S) = p,
when receiving in input (an encoding of) M , it produces in output (an encoding of) the surface
normal form S with probability p.

Proof. By Lemma 75.(2) and by Remark 13, each reduction step P → P1, P2 that is premise of
a rule s2 in π can be simulated by a PTM running in O(|M |2(d(D)+1))-time. By Lemma 75.(1)
there can be at most O(|M |d(D)+1) applications of s2 in π. By putting everything together, we
obtain a PTM simulating the evaluation of M that runs in O(|M |3(d(D)+1))-time.

4.4 Polytime completeness
In this section we prove the Polytime Completeness Theorem for STA⊕ (Theorem 91). The
basic scheme of the proof is taken from Gaboardi and Ronchi Della Rocca [40], and consists in
encoding PTMs configurations, transitions between configurations, the initialization of a PTM,
and its output extraction. By putting everything together, we are able to represent in STA⊕ a
PTM running in polynomial time, where its transition function will be expressed by means of

103

the non-deterministic rule projA∧AA (W1,W2) → W1,W2 in (4.15). Before giving the complete
encoding, we shall first show how to define in STA⊕ boolean strings, natural numbers, iterations
and polynomials.

Following Dal Lago and Toldin [28], we also prove that STA⊕ is able to capture the complexity
classes PP (Probabilistic Polynomial time) and BPP (Bounded-error Probabilistic Polynomial
time). However, due to the presence of external error bounds, the characterization theorem for
BPP will not be entirely in the style of ICC.

4.4.1 Strings, numerals and polynomial completeness
Gaboardi and Ronchi Della Rocca stressed in [40] that the presence of the multiplexor, i.e. rule
m, makes the encoding of a Turing Machine “non-uniform” in STA. If we consider for example
the standard type for natural numbers N , ∀α.!(α(α)(α(α, a term succ implementing
the usual successor function with type N (N is unknown. This is why the usual data types
are represented in STA by indexed families of types.

Definition 54 (Indexed numerals). For all i ≥ 1, the indexed type Ni and the indexed numerals
ni are defined as follows:

Ni , ∀α.!i(α(α)(α(α

ni , λ!f.λx.(di(f) n. . .(di(f)x)) n ∈ N

when i = 1, we shall write N (resp. n) in place of Ni (resp. ni).

Proposition 77. For all i ≥ 1 and n ∈ N, `STA⊕ ni : Ni.

Like the standard Church numerals, indexed numerals behave as iterators. In fact we can
define n-long iterations of a term S (the step function) over a term B (the base function).

Definition 55. For all i ≥ 1 and for all A ∈ Θ∧,!, the indexed iterator iteri is defined as follows:

iteri , λn.λ!s.λx.n !i(di(s))x : Ni(!i(A(A)(A(A.

Proposition 78. Let i ≥ 1. If ∆ ` B : A and x1 : A1, . . . , xn : An ` S : A (A, then the
following rule can be derived in STA⊕:

Γ ` ni : Ni ∆ ` B : A x1 : A1, . . . , xn : An ` S : A(A

Γ,∆, y1 : !iA1, . . . , yn : !iAn ` iteri ni (!iS[di(y1)/x1, . . . , d
i(yn)/xn])B : A

Moreover, for every indexed numeral ni, we have:

iteri ni (!iS∗)B ⇒ S∗(n. . .(S∗B) . . .)

where S∗ , (S[di(y1)/x1, . . . , d
i(yn)/xn]).

Remark 14. The step function can be iterated only if it is definable through a term typable with
type A (A, for some linear type A. This is in contrast with what happens in linear logic,
where, in general, step functions proving !A(A are allowed.

Definition 56. Let i, j ≥ 1. The indexed successor, addition, and multiplication are definable
in STA⊕ as follows:

• succi , λn.λ!f.λx.di+1(f)(n (!idi+1(f))x);

104

• addi,j , λn.λm.λ!f.λx.n (!idmax(i,j)+1(f))(m (!jd(max(i,j)+1(f))x);

• multi,j , λn.λm.λ!f.n !i(m (!jdi+j(f))).

Proposition 79. For all i, j ≥ 1:

• `STA⊕ succi : Ni(Ni+1;

• `STA⊕ addi,j : Ni(Nj (Nmax(i,j)+1;

• `STA⊕ multi,j : Ni(!iNj (Ni+j.

A straightforward consequence of Remark 14 and Proposition 79 is that the successor, the
addition, and the multiplication of Definition 56 cannot be iterated, they can only be composed
to obtain all polynomials.

Theorem 80 (Representing polynomial functions [40]). Let p : N −→ N be a polynomial in the
variable x and deg(p) be its degree. There is p such that:

x : !deg(p)N `STA⊕ p : N2 deg(p)+1

Proof. Consider p in Horner normal form, i.e. p = a0 + x · (a1 + x · (. . . (an−1 + x · an) . . .)). By
induction on deg(p) we show something stronger, namely that the following is derivable for all
i > 0:

x0 : Ni, x1 : !iNi, . . . , xn : !i(deg(p∗)−1)Ni ` p∗ : Ni deg(p∗)+deg(p∗)+1 (4.18)

where p∗ , a0 + x0 · (a1 + x1 · (. . . (an−1 + xn · an) . . .)). The base case is trivial, so consider
p∗ = a0 + x0 · p′. By induction hypothesis:

x1 : Ni, . . . , xn : !i(deg(p′)−1)Ni ` p′ : Ni·deg(p′)+deg(p′)+1.

If k , i · deg(p′) + deg(p′) + 1 we define:

p∗ , add1,i+k a0 (multi,k x0 (!ip′[di(x1)/x1, . . . , d
i(xn)/xn])).

We have:

x0 : Ni, x1 : !iNi, . . . , xn : !i(deg(p′)−1)+iNi ` p∗ : Ni(deg(p′)+1)+deg(p′)+1+1.

Since deg(p∗) = deg(p′) + 1, the above judgement is exactly (4.18). Now, by taking i = 1 and
repeatedly applying the rule m:

x : !deg(p)N ` p : N2 deg(p)+1.

where p , p∗[dh1(x)/x1 . . . d
hn(x)/xn], for some h1, . . . , hn ≥ 0.

Booleans are defined in (3.2). By convention, we shall fix:

0 , tt 1 , ff. (4.19)

In Figure 3.9 of the previous chapter we show how to encode the boolean functions of the
standard unbounded fan-in basis in IMLL2. As a consequence, every boolean function can be
represented in this system, and hence in STA⊕.

105

Lemma 81 (Functional completeness [65]). Let n,m ∈ N. Every boolean total function f :
{0, 1}n −→ {0, 1}m is represented by a term f such that `IMLL2 f : Bn(Bm.

As in the case of numerals, the encoding of strings of booleans requires the introduction of
indexes:

Definition 57 (Indexed strings). For all i ≥ 1, the indexed type Si and the indexed n-ary boolean
strings si are defined as follows:

Si , ∀α.!i(B(α(α)((α(α)

si , λ!c.λz.di(c)b1(. . . (di(c)bnz) . . .) where s = b1 . . . bn ∈ {0, 1}n and n ∈ N.

when n = 1, we shall write S (resp. s) in place of S1 (resp. s1).

Proposition 82. For all i ≥ 1, `STA⊕ si : Si.

The function associating with each string of booleans its length can be defined for all i ≥ 1
as follows:

leni , λs.λf.s !i(λx.λy.let EB x be I in fy) (4.20)

with type Si(Ni, where EB is as in (3.3).

4.4.2 Encoding the polytime PTM

In this subsection we show how to encode the polytime PTM in STA⊕ and how to simulate
its computation by means of the relation ⇒ in Definition 48. One of the key steps toward
completeness is to prove that every PTM transition function is definable in STA⊕. First, we
show how to encode the transition function of a (deterministic) Turing Machine.

Proposition 83 (Transition functions). The transition function δM of a Turing Machine M
with at most 2n states is represented in STA⊕ by a suitable δM : Bn+1 (Bn+2.

Proof. LetM be a Turing Machine with alphabet Γ = {0, 1} and states Q = {q1, . . . , qk}, where
k ≤ 2n. We use the inhabitants of B to represent both the elements of Γ and the head moves,
while the inhabitants of Bn are used to represent states in Q. A configuration (q, b) ∈ Q × Γ
is then encoded by the pair 〈q, b〉 of type Bn+1. The triple 〈q′, b′,m〉 of type Bn+2 stands for
δM((b, q)) = (q′, b′,m) ∈ Q × Γ × {left, right}. Now, we want the transition function δM to be
represented by a term δM of type Bn+1 (Bn+2. So, let:

M〈tn,t〉,M〈tn−1f,t〉, . . . ,M〈fn−1t,t〉,M〈fn,t〉,M〈tn,f〉,M〈tn−1f,f〉, . . . ,M〈fn−1t,f〉,M〈fn,f〉

be a family of (not necessarily distinct) inhabitants of Bn+2 indexed by the inhabitants of Bn+1,
and such that:

M〈q,b〉 = 〈q′, b′,m〉 if and only if δM((q, b)) = (q′, b′,m).

By Definition 16 in Section 3.2.2 we can define:

δM ,λx.if x then
[
M〈tn,t〉,M〈tn−1f,t〉, . . . ,M〈fn−1t,t〉,M〈fn,t〉,

M〈tn,f〉,M〈tn−1f,f〉, . . . ,M〈fn−1t,f〉,M〈fn,f〉
]

: Bn+1 (Bn+2

so that, δM〈q, b〉 ⇒ 〈q′, b′,m〉 if and only if 〈q′, b′,m〉 = M〈q,b〉 if and only if δM((q, b)) =

(q′, b′,m).

106

A Probabilistic Turing Machine P is a Turing Machine whose transition function δP can be
seen as the superposition of two (deterministic) Turing Machine transition functions δ0 and δ1:
at each step in the computation, P selects δ0 with probability 1

2 and δ1 with probability 1
2 . So,

let δ0, δ1 : Q× Γ −→ Q× Γ× {left, right} be two Turing Machine transition functions, where Q
contains at most 2n states and Γ = {0, 1}. By Proposition 83, there exist δ0 and δ1, both having
type Bn+1 (Bn+2 in STA⊕. Then, we define:

δP , λx.proj
Bn+2∧Bn+2

Bn+2 (copytt
n+1

Bn+1 x as x0, x1 in (δ0 x0, δ1 x1))

whose typing is shown in Figure 4.14(a). Moreover, if 〈q, p〉 is a pair encoding a PTM configu-
ration (q, b) ∈ Q× Γ, and if δi〈q, p〉 ⇒ 〈qi, bi,mi〉 for i ∈ {1, 2}, then:

δP〈q, p〉 ⇒
1

2
· 〈q0, b0,m0〉+

1

2
· 〈q1, b1,m1〉

whose derivation is shown in Figure 4.14(b).
Summing up, we have:

Corollary 84 (Probabilistic transition functions). The transition function δP of a Probabilistic
Turing Machine P with at most 2n states is definable in STA⊕ by a suitable δP : Bn+1 (Bn+2.

A configuration can be represented by a tuple divided up in three parts: the first one repre-
sents the left hand-side of the tape with respect to the head; the second one represents the right
part of the tape starting with the cell scanned by the head; finally, the third part represents the
state of the machine. W.l.o.g., we shall assume that the left part of the tape is represented in
reversed order, that the alphabet is composed by the two symbols 0 and 1, and that the final
states are divided into accepting and rejecting.

Definition 58 (Indexed configuration). For all i, k ≥ 1, we define the indexed type PTMi and
the indexed configuration configi as follows:

PTMk
i , ∀α.!i(B(α(α)(((α(α)2 ⊗Bk)

configi , λ!c.〈di(c) bl0 ◦ · · · ◦ di(c) bln , di(c) br0 ◦ · · · ◦ di(c) brm , Q〉.

where M ◦ N , λz.M(Nz), Q , 〈q1, . . . , qk〉, and bl0, . . . , b
l
n, b

r
0, . . . , b

r
m, q1, . . . , qk ∈ {0, 1}, for

n,m ∈ N.

Proposition 85. For all i, k ≥ 1, `STA⊕ configi : PTMk
i .

In the above definition, the terms:

di(c) bl0 ◦ · · · ◦ di(c) blnl di(c) br0 ◦ · · · ◦ di(c) brnr Q , 〈q1, . . . , qk〉

represent, respectively, the left and the right part of the tape, where di(c) br0 is the scanned
symbol, and the current state Q = (q1, . . . , qk).

Following Mairson and Terui [65], in order to show that the PTM transition from a con-
figuration to another is definable we consider two distinct phases. In the first one, the PTM
configuration is decomposed to extract the first symbol of each part of the tape. In the second
phase, depending on the transitions function, these symbols are combined to reconstruct the
tape after the transition step. Thus, we require an intermediate type, denoted IDk

i , and defined
for all i, k ≥ 1 as follows:

IDk
i , ∀α.!i(B(α(α)(((α(α)2 ⊗ (B(α(α)⊗B⊗ (B(α(α)⊗B⊗Bk)

107

a
x

x
:
B
n

+
1
`
x

:
B
n

+
1

...
x

0
:
B
n

+
1
`
δ
0
x

0
:
B
n

+
2

...
x

1
:
B
n

+
1
`
δ
1
x

1
:
B
n

+
2

...
`
t
t
n

+
1

:
B
n

+
1

∧
I1

x
:
B
n

+
1
`
c
o
p
y
t
t
n
+

1

B
n
+

1
x
a
s
x

0 ,x
1
i
n

(δ
0
x

0 ,δ
1 x

1)
:
B
n

+
2∧

B
n

+
2

∧
E

x
:
B
n

+
1
`
p
r
o
j

B
n
+

2∧
B
n
+

2

B
n
+

2
(c
o
p
y
t
t
n
+

1

B
n
+

1
x
a
s
x

0 ,x
1
i
n

(δ
0
x

0 ,δ
1
x

1))
:
B
n

+
2

(
I

`
λ
x
.p
r
o
j

B
n
+

2∧
B
n
+

2

B
n
+

2
(c
o
p
y
t
t
n
+

1

B
n
+

1
x
a
s
x

0 ,x
1
i
n

(δ
0
x

0 ,δ
1
x

1))
:
B
n

+
1
(

B
n

+
2

(a)
A

derivation
in

S
T
A
⊕

for
δ
P
,
λ
x
.p
r
o
j
B
n
+

2∧
B
n
+

2

B
n
+

2
(c
o
p
y
t
t
n
+

1

B
n
+

1
x
a
s
x
0 ,x

1
i
n

(δ
0
x
0 ,δ

1
x
1)).

δP 〈q,p〉→
δ
〈q
,p〉
P

δ
〈q
,p〉
P

→
δ
〈q
,p〉

0
⊕
δ
〈q
,p〉

1

δ
〈q
,p〉

0
⊕
δ
〈q
,p〉

1
→
δ
0 〈q,p〉,δ

1 〈q,p〉

...
δ
0 〈q,p〉⇒

〈q
0 ,b

0 ,m
0 〉

...
δ
1 〈q,p〉⇒

〈q
1 ,b

1 ,m
1 〉
s2

δ
〈q
,p〉

0
⊕
δ
〈q
,p〉

1
⇒

12
·〈q

0 ,b
0 ,m

0 〉
+

12
·〈q

1 ,b
1 ,m

1 〉
s2

δ
〈q
,p〉
P

⇒
12
·〈q

0 ,b
0 ,m

0 〉
+

12
·〈q

1 ,b
1 ,m

1 〉
s2

δP 〈q,p〉⇒
12
·〈q

0 ,b
0 ,m

0 〉
+

12
·〈q

1 ,b
1 ,m

1 〉

(b)
D
erivation

of
δ
P
〈q,p〉

⇒
12
·〈q

0 ,b
0 ,m

0 〉
+

12
·〈q

1 ,b
1 ,m

1 〉.

A
bbreviations:

δ
〈q
,p〉
P

,
p
r
o
j

B
n
+

2∧
B
n
+

2

B
n
+

2
(c
o
p
y
t
t
n
+

1

B
n
+

1
〈q,p〉

a
s
x

0 ,x
1
i
n

(δ
0
x

0 ,δ
1
x

1))

δ
〈q
,p〉

0
⊕
δ
〈q
,p〉

1
,

p
r
o
j

B
n
+

2∧
B
n
+

2

B
n
+

2
((δ

0 〈q,p〉,δ
1 〈q,p〉)).

F
igure

4.14:
T
he

encoding
of

a
P

T
M

transition
function.

108

and the decomposition phase is represented by the following term:

decomi , λm.λ!c.let m !i(F [di(c)]) be l, r, q in

(let l〈I, λx.let EB x be I in I, 0〉 be sl, cl, bl0 in

(let r〈I, λx.let EB x be I in I, 0〉 be sr, cr, br0 in

〈sl, sr, cl, bl0, cr, br0, q〉))

(4.21)

where F [x] , λb.λz.let z be g, h, i in 〈hi ◦ g, x, b〉 and EB is as in (3.3).

Proposition 86. For all i, k ≥ 1, `STA⊕ decomi : PTMk
i (IDk

i .

The behaviour of decomi is to decompose a configuration in such a way as to extract the
symbols of the tape which determine, together with the current state, the structure of the next
configuration:

decomi(λ!c.〈di(c) bl0 ◦ · · · ◦ di(c) bln , di(c) br0 ◦ · · · ◦ di(c) brm , Q〉)

⇒ λ!c.〈di(c) bl1 ◦ · · · ◦ di(c) bln , di(c) br1 ◦ · · · ◦ di(c) brm , di(c) , bl0 , di(c) , br0 , Q〉.

Analogously, the composition phase is represented by the following term:

comi , λs.λ!c.let s !i(di(c)) be l, r, cl, bl, cr, br, q in let δP 〈br, q〉 be q′, b′,m in

(if m then M1 else M2)b′q′〈l, r, cl, bl, cr〉
(4.22)

where δP is the transition function of the PTM P as in Corollary 84, and:

M1 , λb′.λq′.λp.let p be l, r, cl, bl, cr in 〈cr b′ ◦ cl bl ◦ l, r, q′〉
M2 , λb′.λq′.λp.let p be l, r, cl, bl, cr in 〈l, cl bl ◦ cr b′ ◦ r, q′〉.

Proposition 87. For all i, k ≥ 1, `STA⊕ comi : IDk
i (PTMk

i .

Then, the behaviour of comi, depending on the δP transition function and on the current
state, is to combine the symbols we put aside in order to return a distribution of the next
configurations. For example, if the deterministic transition functions δ0 and δ1 defining δP are
such that δ0((br0, Q)) = (Q′, b′, right)) and δ1((br0, Q)) = (Q′′, b′′, left), then:

comi (〈di(c) bl1 ◦ · · · ◦ di(c) bln , di(c) br1 ◦ · · · ◦ di(c) brm , di(c) , bl0 , di(c) , br0 , Q〉)

⇒ 1

2
· λ!c.〈di(c) b′ ◦ di(c) bl0 ◦ di(c) bl1 ◦ · · · ◦ di(c) bln, di(c) br1 ◦ · · · ◦ di(c) brm, Q′〉

+

1

2
· λ!c.〈di(c) bl1 ◦ · · · ◦ di(c) bln, di(c) bl0 ◦ di(c) b′′ ◦ di(c) br1 ◦ · · · ◦ di(c) brm, Q′〉.

By combining the above terms we obtain an entire PTM transition step.

Definition 59 (Indexed transition step). Let i, k ≥ 1. The indexed transition step is defined by
tri , comi ◦ decomi, with type PTMk

i (PTMk
i in STA⊕.

The initial configuration of a PTM is a configuration in the initial state Q0 = (q1, . . . , qk) with
the head at the beginning of a tape filled by 0’s. Then, we need a term that, taking a numeral
ni as input, gives the encoding of the initial configuration with tape of length n as output.

109

Definition 60 (Indexed initial configuration). For all i, k ≥ 1, the indexed initial configuration
is defined as follows:

initi , λn.λ!c.〈λz.z, λz.n !i(di(c) 0)z,Q0〉.

Proposition 88. For all i, k ≥ 1, `STA⊕ initi : Ni(PTMk
i .

The PTM needs now to be initialized with the given input string, by writing it on its tape.
The term representing the initialization requires the term decomi in (4.21).

Definition 61 (Indexed initialization). For all i, k ≥ 1, the indexed initialization is defined by
ini , λs.λm.s !(λb.T b ◦ decomi)m, where:

T , λb.λm.λ!c.let m (!idi(c)) be l, r, cl, bl, cr, br, q in

let EB br be I in Rbq〈l, r, cl, bl, cr〉
R , λb′.λq′.λp.let p be l, r, cl, bl, cr in 〈cr b′ ◦ cl bl ◦ l, r, q′〉.

where EB is as in (3.3).

Proposition 89. For all i, k ≥ 1, `STA⊕ ini : S(PTMk
i (PTMk

i .

Last, we need to extract the output string from the final configuration.

Definition 62 (Indexed extraction). For all i, k ≥ 1, we define the indexed extraction as the
following term:

extS
i , λm.λ!c.let m !i(di(c)) be l, r, q in (let EBk q be I in l ◦ r).

where EBk is an eraser of the ground type Bk, that exists by Theorem 9.

Proposition 90. For all i, k ≥ 1, `STA⊕ extS
i : PTMk

i (Si.

By putting everything together, we are now able to encode a polytime PTM in STA⊕.

Theorem 91 (Polytime completeness). Let P be a PTM such that:

• P runs in p(n)-time, for some polynomial p : N −→ N with deg(p) = d1;

• P runs in q(n)-space, for some polynomial q : N −→ N with deg(q) = d2;

• ∀s ∈ {0, 1}∗, Ss : {0, 1}∗ → [0, 1] is the probabilistic distribution of the output strings of P
on input s.

Then there exists a term P with type !max(d1,d2,1)+1S (S2d2+1 in STA⊕ such that, for every
s ∈ {0, 1}∗, there exists a surface distribution Ds satisfying the following conditions:

(1) P (!max(d1,d2,1)+1s)⇒ Ds;

(2) ∀s′ ∈ {0, 1}∗, Ds(s
′) = Ls(s

′).

Proof. Let P be a PTM running in polynomial time p : N −→ N and in polynomial space
q : N −→ N, with deg(p) = d1 and deg(q) = d2. We set [p] = 2d1 + 1 and [q] = 2d2 + 1. By
Theorem 80 and Lemma 71 we have that the following judgements are derivable in STA⊕:

sp : !d1S ` P : N[p]

sq : !d2S ` Q : N[q]

(4.23)

110

where P , p {!d1(len1 d
d1(sp))/x}, Q , q {!d2(len1 d

d2(sq))/x}, and len1 is defined in (4.20).
Again, by repeatedly applying Lemma 71 we can compose the terms in Definitions 59, 60, 61,
and 62 to obtain a derivation in STA⊕ of the following judgement:

s′ : S, p : N[p], q : N[q] ` extS
[q](p (![p]tr[q])(in[q] s

′ (init[q] q))) : S[q]. (4.24)

By two further applications of Lemma 71, we can compose (4.23) and (4.24) to obtain the
following:

s′ : S, sp : !d1S, sq : !d2S ` extS
[q](P (![p]tr[q])(in[q] s

′ (init[q]Q))) : S2d2+1.

By repeatedly applying rule m, and by applying rule (I, we obtain the term:

`STA⊕ P : !max(d1,d2,1)+1S(S2d2+1.

One can check that both point (1) and point (2) hold.

4.4.3 Characterizing probabilistic complexity classes
In the previous subsection, STA⊕ has been proved complete with respect to all polytime PTMs
returning strings. But which complexity class our system is actually able to capture?

We start recalling some basic definitions from Arora and Barak [5].

Definition 63 (Recognising a language with error). Let ε ∈ [0, 1]. Let P be a PTM and
L ⊆ {0, 1}∗ a language. We say that P recognises L with error probability ε if:

• x ∈ L implies Pr[P accepts x] ≥ 1− ε,

• x 6∈ L implies Pr[P rejects x] ≥ 1− ε,

where Pr[P accepts x] (resp. Pr[P rejects x]) is the probability that P on input x terminates
on an accepting (resp. rejecting) state. Moreover, if T : N −→ N is a function, we say that P
recognizes L with error probability ε in T (n)-time if it recognises L with error probability ε and,
on every input x, it requires at most T (|x|) steps of computation regardless of its random choices.

As opposed to the deterministic case, there are several probabilistic polytime complexity
classes depending on the degree of accuracy we are willing to impose in recognising a language.
We shall consider the classes PP (Probabilistic Polynomial time) and BPP (Bounded-error Prob-
abilistic Polynomial time).

Definition 64 (The classes PP and BPP).

• PP is the set of all languages that can be recognised by a PTM with error probability
0 ≤ ε ≤ 1

2 in p(n)-time, for some polynomial p : N −→ N.

• BPP is the set of all languages that can be recognised by a PTM with error probability
0 ≤ ε < 1

2 in p(n)-time, for some polynomial p : N −→ N.

Observe that ε can be even equal to 1
2 in PP, while it cannot in BPP. Due to this restriction,

BPP enjoys an “amplification lemma”, that gives a simple way of making the error probability
exponentially small:

Lemma 92 (Amplification [86]). Let 0 ≤ ε < 1
2 . Then, for every polynomial p : N −→ N, a

polytime PTM that recognises a language L ⊆ {0, 1}∗ with error probability ε has an equivalent
polytime PTM that recognises L with an error probability 2−p(n).

111

Several interesting languages in BPP have very efficient algorithms that recognise them. So,
it is believed that BPP captures efficient probabilistic computation.

The following hierarchy is a straightforward consequence of Definition 64 (see Section 2.3.2):

Proposition 93 (Hierarchy). PTIME ⊆ BPP ⊆ PP.

It is still unknown if there are strict inclusions between these classes. A central open question
of complexity theory is whether or not BPP = PTIME. Many complexity theorists believe that
this equation holds, i.e. that there is a way to transform every probabilistic algorithm to a
deterministic algorithm (one that does not toss any coin) while incurring only a polynomial
slowdown.

Remark 15. Though very natural, BPP behaves differently from other classes. For example,
PTIME and PP are often called syntactic classes, meaning that there is an easy way of checking
if a machine recognises one of their languages. For example, every polytime PTM P recognises
a language LP in PP, which can be identified as follows. For all x ∈ {0, 1}∗:

• if Pr[P accepts x] ≥ 1
2 then x ∈ LP ;

• otherwise, Pr[P accepts x] ≤ 1
2 , so Pr[P reject x] ≥ 1

2 and x 6∈ LP .

This is not the case for BPP. Indeed, suppose that Pr[P accepts x] = Pr[P rejects x] = 1
2 , for

some x ∈ {0, 1}∗. Is P recognising a language L in BPP? No, because neither x ∈ L nor x 6∈ L
hold, according to Definition 64. Due to these features, BPP is often called a semantic class.

We now need to define when a term typable in STA⊕ recognises a language. A first approach
is to let the bound on the error probability occur explicitly:

Definition 65 (Recognising a language with error ε). Let ε ∈ [0, 1], let L ⊆ {0, 1}∗ be a language,
and let M be a term with type !nS(B in STA⊕, for some n ∈ N. We say that M recognises L
with error probability ε if and only if the following conditions hold:

(1) if s ∈ L and M(!ns)⇒ D , then D(0) > 1− ε;

(2) if s 6∈ L and M(!ns)⇒ D , then D(1) > 1− ε.

STA⊕ captures both complexity classes. To show this, it suffices to replace the term extS
i in

the encoding of Theorem 91, which we recall extracts the output string from the final configu-
ration of a PTM, with a term extracting the final state of a PTM (which is always accepting or
rejecting by assumption). The latter term can be defined, for all i, k ≥ 1, as follows:

extB
i , λm.let m !i(λb.λc.let EB b be I in c) be l, r, q

in (l ◦ r)(fq) : PTMk
i (B

where EB is as in (3.3) and f is a function deciding if a state is accepting or rejecting, that always
exists by Lemma 81. The resulting encoding is able to represent all PTMs that, when fed with
an input string, run in polynomial time returning the acceptance of not of a final configuration.
Hence STA⊕ is able to represent all PTMs recognising a language in PP or BPP:

Theorem 94 (PP and BPP). The set of languages which can be recognised with error ε in STA⊕
for some 0 < ε ≤ 1

2 equals PP. The set of languages which can be recognised with error ε in
STA⊕ for some 0 < ε < 1

2 equals BPP.

112

In other words, STA⊕ does not capture a single polytime complexity class, but several, de-
pending on how the error bound has been set. Here comes the main drawback of Theorem 94, as
observed in Dal Lago and Toldin [28]: the presence of an explicit, external error makes the char-
acterization “less implicit”, i.e. not in the style of ICC. A more implicit notion of characterization
can be introduced by considering the so-called “representability by majority”:

Definition 66 (Representability by majority). Let L ⊆ {0, 1}∗ be a language, and let M be a
term with type !nS(B in STA⊕, for some n ∈ N. We say that M represents L by majority if
and only if the following conditions hold:

(1) if s ∈ L and M(!ns)⇒ D , then D(0) ≥ D(1);

(2) if s 6∈ L and M(!ns)⇒ D , then D(1) ≥ D(0).

According to the above definition, STA⊕ captures the class PP:

Theorem 95 (Completeness by majority for PP). The set of languages which can be represented
by majority in STA⊕ equals PP.

No similar characterization is known for BPP. This fact should not be surprising, since BPP
is a semantic class, as discussed in Remark 15: there is no easy way of deciding if a given
PTM recognises a language in BPP. Now, if there were a “truly” implicit characterization in
STA⊕ of this class, listing all theorems of the system would provide a straightforward recursive
enumeration of the PTMs recognising languages in BPP.

113

114

Chapter 5

The Benefit of Being Non-Lazy
in Probabilistic λ-calculus

The probabilistic λ-calculus Λ⊕ extends the pure untyped λ-calculus with a sum M ⊕N , eval-
uating to M or N with equal probability 0.5. An operational semantics for Λ⊕ gives a function
mapping a term M to a probability distribution JMK of values. As in the standard λ-calculus,
different design choices may affect the meaning JMK of a term.

First, one has to decide how to evaluate a β-redex, i.e. the application of a function λx.M
to an argument N . There are two main evaluation mechanisms: the call-by-value policy (cbv)
consists in first evaluating N to some value V , then replacing the parameter x inM with V , while
the call-by-name policy (cbn) replaces x with N as it is, before any evaluation. It is well-known
that the two policies give rise to different results, especially in a probabilistic setting. Consider
for example the term (λvz.vv)(T⊕F), where T = λxy.x and F = λxy.y. In cbv, we first evaluate
T⊕F, yielding either T or F with equal probability, and then we pass the result to the function
λvz.vv, producing either λz.TT or λz.FF, both with probability 0.5. By contrast, in cbn we
pass the whole term T ⊕ F to the function before evaluating it, obtaining λz.(T ⊕ F)(T ⊕ F)
with probability 1.

Second, one has to define which redexes to evaluate in a term, if any. Here again, there
are various choices in λ-calculus: the lazy strategy, forbidding any reduction in the body of a
function, so that λx.M is a value whatever M is, or the head reduction, consisting in reducing
the redex in head position, which is at the left of any application. Concerning the lazy strategies,
the meaning of a term is a distribution of weak head normal forms, i.e. either head normal forms
without external abstractions or terms with form λx.M . Concerning the head reduction, the
meaning of a term is a distribution of head normal forms.

Let us remark that some variants of the standard head reduction have been studied, as for
example the head spine reduction [84] that, given a β-redex (λx.M)N , first evaluates the body of
M and then evaluates the outermost redex according to cbn. One of the results of this chapter
is that the head and head spine strategies are actually equivalent in (both the deterministic and)
the probabilistic setting (Theorem 115). To the best of our knowledge, this result is not in the
literature, even in the deterministic case.

Comparing terms by their operational semantics leads to undesired consequences, as higher-
order normal forms differ often by syntactical details that are inessential with respect to their
computational behaviour. Context equivalence is usually considered: two termsM,N are context
equivalent (M =cxt N in symbols) whenever they “behave” the same in any possible “program-
ming context”. In Λ⊕, a context C is a term with a special variable [·], the hole, and what we

115

observe is the total mass of the distribution JC[M]K, i.e. the total probability of getting a result
from the evaluation of the term C[M] obtained by replacing the hole with M . The definition of
=cxt depends therefore on the chosen operational semantics.

Proving that two terms are context equivalent is rather difficult since we have to consider
all contexts, hence the quest for more tractable equivalences comparable with =cxt. We say in
particular that an equivalence ≡ over λ-terms is sound with respect to =cxt whenever the former
implies the latter (i.e. ≡⊆=cxt), it is complete if the converse holds (i.e. =cxt⊆≡) and it is fully
abstract if it is both sound and complete, i.e. the two relations coincide.

In probabilistic λ-calculus, the first results in this line of research have been achieved in
the setting of the denotational semantics of the Λ⊕ head reduction. In particular, Ehrhard et
al. prove that the equivalence ≡D∞ induced by the reflexive object D∞ of the cartesian closed
category of probabilistic coherence spaces [34] (as well as of the weighted relations [57]) is sound.
More recently, Leventis proves a fundamental separation theorem, giving as a consequence that
the probabilistic Nakajima tree equality is complete [60]. From the latter result, Clairambault
and Paquet derive a fully abstract game model of Λ⊕ and as a corollary also the full abstraction
of D∞ [20]. The latter result has been also achieved independently by Leventis and Pagani [61].

All the above results deal with the head reduction, i.e. a non-lazy cbn operational semantics.
For lazy strategies, a different approach is available, based on the notion of applicative bisim-
ulation, which is the main subject of this chapter. The idea dates back to Abramsky [1] and
consists in looking at the operational semantics as a transition system having λ-terms as states
and transitions given by the evaluation of the application between λ-terms. The benefit of this
setting is to transport into λ-calculus the whole theory of bisimilarity and its associated coin-
ductive reasoning, which is a fundamental tool for comparing processes in concurrency theory.
Basically, two terms M and N are applicative bisimilar (in symbols M ∼ N) whenever their
applications MP and NP reduce to applicative bisimilar values for any argument P .

This approach has been lifted to the probabilistic λ-calculus in a series of works by Dal Lago
et al. [27, 22, 23], introducing the notion of probabilistic applicative bisimilarity (PAB) for lazy
semantics. In particular, PAB is proven to be sound with the context equivalence in both cbv
and cbn, but only cbv PAB is fully abstract. In case of lazy cbn, we have terms like:

M , λxy.(x⊕ y) N , (λxy.x)⊕ (λxy.y) (5.1)

such thatM =cxt N butM 6∼ N . In fact, lazy PAB is able to discriminate between a term where
a choice can be performed before any interaction, like N, and a term that needs to interact in order
to trigger a choice, like M. Notice that this difference is caught also by cbv context semantics.
For example, the two terms in (5.1) are distinguished by the context C = (λv.(vIΩ)(vIΩ))[·] in
cbv, because the total mass of JC[M]Kcbv is 0.25, while that of JC[N]Kcbv is 0.5. This is not the
case in cbn, because JC[M]Kcbn = JC[N]Kcbn has mass 0.25.

In [27] the authors analyse the above example remarking that the cbn policy misses the
“capability of copying a term after having evaluated it”. This is indeed a fundamental primitive
in probabilistic programming: when implementing a probabilistic algorithm we need often to toss
a coin and then to pass the result of this tossing to several subroutines. It is then common to
extend a probabilistic language with a let constructor, often called sampling, evaluating a choice
before passing it to a function even in a cbn semantics. As expected, it is shown by Kasterovic
and Pagani [53] that such an extension recovers cbn PAB full abstraction, as terms like (5.1)
become contextually different.

The above considerations lead us to the following striking observations. First, it has been
proven that in simply typed languages the presence of the let constructor does not affect the
discriminating power of the context equivalence. For example, in probabilistic PCF the lazy cbn
context equivalence coincides with the equality in the model of probabilistic coherence spaces [36,

116

37], with or without a sampling primitive. Why this neat difference with an untyped framework?
Second, we have already mentioned several denotational models of Λ⊕ which are fully abstract
with respect to a pure cbn context equivalence, so without this “capability of copying a term
after having evaluated it”. Is it really so necessary for getting a fully abstract PAB?

The first question can be easily answered by focussing on the laziness constraint of the
operational semantics. Every λ-abstraction is a value for a lazy semantics. This does not affect
the set of observables in a simply typed setting (as PCF), because it is defined on ground types
(booleans, numerals, etc). By contrast, every term is a function in an untyped setting, so the
laziness radically changes what we can observe in the behaviour of a term. The goal of this
chapter is to show that also the second question deals with laziness: we prove that PAB is fully
abstract for the head reduction (Theorem 134). This is unexpected: non-lazy semantics seems
to have no need of the sampling primitives in order to have fully abstract PAB, even with a cbn
policy and an untyped setting.

On a more technical side, we stress that our proofs of soundness and completeness follow a
different reasoning than the one used in probabilistic lazy semantics [22, 23, 53]. First, the sound-
ness (∼⊆=cxt) does not need a Howe lifting [52], as we prove a Context Lemma (Lemma 119) for
=cxt and an applicative property of ∼ (Lemma 125), the latter using the notion of probabilistic
assignments as in [27]. Second, and more fundamental, the proof of completeness (=cxt⊆∼) is
not achieved by transforming PAB into a testing equivalence using a theorem by van Breugel et
al. [92], as in Crubillé and Dal Lago [22]. Rather, we use the Leventis Separation property [60]
to prove that the context equivalence is a probabilistic applicative bisimulation and so contained
in PAB by definition (Theorem 134).

What about inequalities? All equivalences introduced so far have an asymmetric version:
the context preorder and the probabilistic applicative similarity (PAS). We prove also that PAS
is sound but not complete with respect to the context inequality. We give a counterexample
to the full abstraction in the asymmetric case (see (5.16)) and we argue that extending the
calculus with Plotkin’s parallel disjunction [76], as done by Crubillé and Dal Lago in [23], is
enough to circumvent the counterexample. This leaves some room for the conjecture that the
full abstraction for PAS can be somehow restored in this extended calculus.

Outline of the chapter. In this chapter we show that probabilistic applicative bisimilarity
is fully abstract for the head reduction, also known as non-lazy cbn, in the pure and untyped
probabilistic λ-calculus. In Section 5.1 we present the probabilistic λ-calculus endowed with a
big-step probabilistic operational semantics based on the head spine reduction (Section 5.1.1
and 5.1.2), and we define the context preorder and context equivalence relations (Section 5.1.3).
Then we recall the basic notions and results about probabilistic similarity and bisimilarity (Sec-
tion 5.1.4), and we introduce PAS (probabilistic applicative similarity) and PAB (probabilistic
applicative bisimilarity) (Section 5.1.5). In Section 5.2 we prove that the head reduction and
the head spine reduction yield the same operational semantics. On the one hand, the latter
evaluation policy allows for a simpler proof of the Soundness Theorem. On the other hand, the
equivalence between the two reduction strategies enables us to show the Completeness Theorem
using Leventis’ Separation [60] for the head reduction. In Section 5.3 we prove the Context
Lemma (Section 5.3.1), and we apply it to show that PAS is included in the context preorder
relation, and hence that PAB is sound with respect to the context equivalence (Section 5.3.2).
In Section 5.3 we briefly recall from [60] the probabilistic Nakajima trees and the Separation
Theorem (Section 5.4.1), and we use the latter to prove that PAB is complete, and hence fully
abstract, with respect to the context equivalence (Section 5.4.2). Finally, we introduce a coun-
terexample to the completeness property relating PAS with the context preorder (Section 5.4.3),
and we discuss how a full abstraction result for PAS can be obtained in an extended calculus

117

(Section 5.4.4).

5.1 Preliminaries

In this section we introduce the fundamental notions of the chapter. We first present the syn-
tax and the operational semantics of the probabilistic λ-calculus Λ⊕, on top of which we shall
consider the context preorder and the context equivalence relations. Then, we recall Larsen and
Skou’s probabilistic (bi)similarity on labelled Markov chains [58]. Following [27, 22, 53], we shall
apply Abramsky’s applicative (bi)similarity [1] to the operational semantics of Λ⊕, getting the
probabilistic applicative (bi)similarity.

5.1.1 The probabilistic λ-calculus Λ⊕

The probabilistic λ-calculus is the pure, untyped λ-calculus extended with a binary sum operator
⊕ representing a fair choice. The terms of the probabilistic λ-calculus are defined like in [27, 53],
where the head normal forms will be considered as values:

Definition 67 (Terms and head normal forms). Let V = {x, y, . . .} be a denumerable set of
variables. The set Λ⊕ of (probabilistic λ-)terms is generated by the following grammar:

M := x | λx.M | MM | M ⊕M (5.2)

where x ∈ V. A term is in (or is a) head normal form if it is of the form λx1 . . . xn.yN1 . . . Nm,
for some n,m ∈ N. If n = 0 then the term is also called neutral. Head normal forms are ranged
over by metavariables like H. The set of all head normal forms will be denoted by HNF, the set
of all neutral terms will be denoted by NEUT.

Terms are considered modulo renaming of bound variables. The set of free variables of a
term M (i.e. FV (M)) and the clash-free substitution of N for the free occurrences of x in M
(i.e. M [N/x]) are defined in a standard way. Finite subsets of V are ranged over by Γ. Given
Γ, the set of terms (resp. head normal forms) whose free variables are within Γ is denoted ΛΓ

⊕
(resp. HNFΓ).

Example 22. Useful terms are the identity I , λx.x, the boolean values T , λxy.x and
F , λxy.y, the duplicator ∆ , λx.xx, the ever looping term Ω , ∆∆ and the Turing fixed-
point combinator Θ , (λx.λy.(y(xxy)))(λx.λy.(y(xxy))). An example of probabilistic λ-term
that does not belong to the standard λ-calculus is hid , I⊕Ω.

Definition 68 (Context). A context of Λ⊕ is a term containing a unique hole [·], generated by
the following grammar:

C := [·] | λx.C | CM | MC | C ⊕M | M ⊕ C (5.3)

We denote by CΛ⊕ the set of all contexts. Given C ∈ CΛ⊕ and M ∈ Λ⊕, C[M] denotes a
term obtained by substituting the unique hole in C with M allowing the possible capture of free
variables of M . A head context is a context of the form λx1 . . . xn.[·]L1 . . . Lm, or λ~x.[·]~L for
short, where n,m ≥ 0 and Li ∈ Λ⊕. We denote by HΛ⊕ the set of all head contexts, that are
ranged over by E .

In the probabilistic semantics for Λ⊕, a term reduces not to a single head normal form but
rather to a subprobability distribution over HNF:

118

M ⇓ ⊥
s1

x ⇓ x
s2

M ⇓ D

λx.M ⇓ λx.D
s3

M ⇓ D {H[N/x] ⇓ EH,N}λx.H ∈ supp(D)

MN ⇓
∑

λx.H ∈ supp(D)

D(λx.H) · EH,N +
∑

H ∈ supp(D)∩NEUT

D(H) ·HN
s4

M ⇓ D N ⇓ E

M ⊕N ⇓ 1

2
·D +

1

2
· E

s5

Figure 5.1: Big-step approximation.

Definition 69 (Head distributions). A head distribution is a subprobability distribution over
HNF, i.e. a function D : HNF −→ [0, 1] such that:∑

H∈HNF

D(H) ≤ 1.

In Section 2.5.2 we introduced the basic definitions and conventions related to subprobability
distributions. So, for example, D(HNF) stands for the set of all head distributions and ≤D for
the pointwise order on D(HNF); moreover, ⊥ denotes the null distribution, while D(X) denotes∑
H∈X D(H) whenever X ⊆ HNF. We may also write D(X) for a generic subset X ⊆ Λ⊕ of

terms, meaning in fact D(X ∩HNF).
Head distributions are subprobability distributions, and hence they do not necessarily sum to

1. This allows us to model divergence, and to look at some distributions as “approximations” of
others by comparing them with the pointwise order ≤D on D(HNF), where (D(HNF),≤D) is a
directed-complete partial order with least element ⊥ (see (2.2) in Section 2.5.2).

Given a head distribution D , the head distribution λx.D is defined, for all H ∈ HNF, as
follows:

(λx.D)(H) ,

{
D(H ′) if H = λx.H ′, for some H ′ ∈ HNF,

0 otherwise.

We now endow Λ⊕ with a big-step probabilistic operational semantics based on the head spine
reduction strategy [84], a variant of the usual head reduction. Following Dal Lago and Zorzi [29],
this can be done in two stages. First we inductively define a notion of big-step approximation
relation M ⇓ D between a term M and head distribution D , which captures convergence. Then,
we define the big-step semantics JMK of M as the supremum of all its big-step approximations.

Definition 70 (Big-step approximation). The big-step approximation relation ⇓⊆ Λ⊕×D(HNF)
is defined by the rules in Figure 5.1.

119

The approximation relation ⇓ in Definition 70 is not a function: many different head distri-
butions can be put in correspondence with the same term M , because of the rule s1 that allows
one to “give up” while looking for a distribution of a term. In other words, ⇓ is not meant to be a
way to attribute one head distribution to every term, but rather to find all finitary approximants
of the unique head distribution we are looking for.

Definition 71 (Big-step semantics). The big-step semantics of a term M ∈ Λ⊕ is defined by:

JMK , sup{D |M ⇓ D}.

The big-step semantics of a term is always a head distribution, as a consequence of (2.2)
(Section 2.5.2) and the following lemma:

Lemma 96. For every M ∈ Λ⊕, {D ∈ D(HNF) | M ⇓ D} is a directed set.

Proof. We have to show that, for every M ∈ Λ⊕, if M ⇓ D and M ⇓ E then there exits
F ∈ D(HNF) such that M ⇓ F and D ,E ≤D F . The proof is by induction on the structure of
the derivations of M ⇓ D and M ⇓ E . If D = ⊥ then F , E . Similarly, if E = ⊥ then F , D .
Otherwise, we consider the structure of M . If M is a variable, say x, then the last rule of both
M ⇓ D and M ⇓ E is s2, and we set F , x. If M is an abstraction, say λx.M ′, then the last
rule of both M ⇓ D and M ⇓ E is s3:

M ′ ⇓ D ′
s3

λx.M ′ ⇓ D

M ′ ⇓ E ′
s3

λx.M ′ ⇓ E

By induction hypothesis, there exists F ′ such that M ′ ⇓ F ′ and D ′,E ′ ≤D F ′, so that we set
F , λx.F ′. If M is an application, say M ′N , the last rule of both M ⇓ D and M ⇓ E is s4:

M ′ ⇓ D ′ {H[N/x] ⇓ D ′′H,N}λx.H ∈ supp(D′)

M ′N ⇓ D
s4

M ′ ⇓ E ′ {H[N/x] ⇓ E ′′H,N}λx.H ∈ supp(E ′)

M ′N ⇓ E
s4

By induction hypothesis, there exist F ′ such that M ′ ⇓ F ′ and D ′,E ′ ≤D F ′. Moreover, for
all H ∈ supp(F ′), if H ∈ supp(D ′) ∩ supp(E ′) then, by induction hypothesis, there exists G ′′H,N
such that H[L/x] ⇓ G ′′H,N and D ′′H,N ,E

′′
H,N ≤ G ′′H,N . Hence, we set:

F ′′H,N ,

D ′′H,N if H ∈ supp(D ′) and H 6∈ supp(E ′),

E ′′H,N if H ∈ supp(E ′) and H 6∈ supp(D ′),

G ′′H,N if H ∈ supp(D ′) ∩ supp(E ′),

⊥ otherwise.

Then, we define:

F ,
∑

λx.H ∈ supp(F ′)

F ′(λx.H) ·F ′′H,N +
∑

H∈ supp(F ′)∩NEUT

F ′(H) ·HN

The last case is when M is a probabilistic sum, say M ′⊕M ′′. Then the last rule of both M ⇓ D
and M ⇓ E is s5:

M ′ ⇓ D ′ M ′′ ⇓ D ′′

M ′ ⊕M ′′ ⇓ D
s5

M ′ ⇓ E ′ M ′′ ⇓ E ′′

M ′ ⊕M ′′ ⇓ E
s5

120

By induction hypothesis, there exist F ′ and F ′′ such that M ′ ⇓ F ′ and D ′,E ′ ≤D F ′, as well
as M ′′ ⇓ F ′′ and D ′′,E ′′ ≤D F ′′. Then, it suffices to define F , 1

2 ·F
′ + 1

2 ·F
′′.

Note that, if M is deterministic, i.e. a term without the probabilistic sum ⊕, then either M
has a unique head normal form H and JMK(H) = 1, or M is a diverging term and JMK = ⊥. So
J·K generalises the usual deterministic semantics.

Example 23. Consider the term M , ∆(T ⊕ F). One can easily check that the rules in
Figure 5.1 allow us to derive M ⇓ D for any D in the following set

{
⊥, 1

4 · λy.T,
1
4 · λy.F,

1
2 ·

I, 1
4 · λy.T + 1

4 · λy.F,
1
4 · λy.T + 1

2 · I,
1
4 · λy.F + 1

2 · I,
1
4 · λy.T + 1

4 · λy.F + 1
2 · I

}
. The latter

head distribution is the supremum of this set and so it defines the semantics of M .

Example 23 is about normalizing terms, which means here terms M with semantics of total
mass

∑
JMK = 1 and such that there exists a unique finite derivation givingM ⇓ JMK. Standard

non-converging terms give partiality:

Example 24. By inspection on the rule s4 in Figure 5.1, one can check that Ω ⇓ D only if
D = ⊥, so JΩK = ⊥. As a consequence we also have, e.g. JΩ⊕ IK = 1

2 · I.

The probabilistic λ-calculus allows us also for almost sure terminating terms, namely terms
M such that

∑
JMK = 1 but without finite derivations of M ⇓ JMK:

Example 25. Consider the derivation of MM ⇓
∑n
i=1

1
2i · y depicted in Figure 5.2, where

M , λx.(y⊕xx). Any such finite approximation of JMMK gives a head distribution of the form∑n
i=1

1
2i · y, for some n ≥ 1, but only the limit sum supni=1

∑
1
2i · y is equal to y, thus yielding

JMMK = y.

The operational semantics can be defined inductively, as the following proposition states:

Proposition 97. For every M,N ∈ Λ⊕ and H ∈ HNF:

(1) JMNK =
∑
λx.H ∈ supp(JMK)JMK(λx.H) · JH[N/x]K +

∑
H ∈ supp(JMK)∩NEUTJMK(H) ·HN ,

(2) J(λx.H)NK = JH[N/x]K,

(3) Jλx.MK = λx.JMK,

(4) JM ⊕NK = 1
2JMK + 1

2JNK.

Moreover, for every H ∈ HNF, JHK = H.

Proof. First, we prove point (1). Let D be such that MN ⇓ D . The case D = ⊥ is trivial,
so suppose D 6= ⊥. Then, MN ⇓ D must be obtained by applying the rule s4 to the premises
M ⇓ E and {H[N/x] ⇓ FH,N}λx.H ∈ supp(E), so that D is of the form:∑

λx.H ∈ supp(E)

E (λx.H) ·FH,N +
∑

H ∈ supp(E)∩NEUT

E (H) ·HN (5.4)

This proves the ≤D direction. For the converse, suppose that E is a head distribution such
that M ⇓ E and, for all λx.H ∈ supp(E), suppose FH,N is a head distribution such that
H[N/x] ⇓ FH,N . By applying rule s4, we get MN ⇓ D , where D is as in (5.4), and the result
follows.

Point (2) is a special case of point (1) where M = λx.H. So, let us prove point (3). As for
the ≤D direction, suppose λx.M ⇓ D . The case D = ⊥ is trivial, so suppose D 6= ⊥. Then,

121

s2
y
⇓
y

s2
x
⇓
x

s4
x
x
⇓
x
x

s5
y
⊕
x
x
⇓

12
·y

+
12
·x
x
s3

M
⇓

12
·
λ
x
.y

+
12
·∆

s2
y
⇓
y

s2
y
⇓
y

s2
x
⇓
x

s4
x
x
⇓
x
x

s5
y
⊕
x
x
⇓

12
·y

+
12
·x
x
s3

M
⇓

12
·
λ
x
.y

+
12
·∆

s2
y
⇓
y

s2
y
⇓
y

s2
x
⇓
x

s4
x
x
⇓
x
x

s5
y
⊕
x
x
⇓

12
·y

+
12
·x
x
s3

M
⇓

12
·λ
x
.y

+
12
·∆

s2
y
⇓
y

s1
M
M
⇓
⊥

s4
M
M
⇓

12
·y

...
s4

M
M
⇓ ∑

n
−

1
i=

1
12
i ·y

s4
M
M
⇓ ∑

ni=
1

12
i ·y

F
igure

5.2:
A

derivation
in

the
big-step

sem
antics

of
M
M
⇓ ∑

ni=
1

12
i ·y,w

here
M
,
λ
x
.(y
⊕
x
x

)
and

∆
=
λ
x
.x
x.

122

λx.M ⇓ D must be obtained from M ⇓ D ′ by applying rule s3, where D = λx.D ′, so that
Jλx.MK ≤D λx.JMK. For the converse, suppose D is a head distribution such that M ⇓ D . By
applying rule s3 we get λx.M ⇓ λx.D , so that λx.JMK ≤D Jλx.MK. Point (4) is similar.

Finally, for all H ∈ HNF, we prove JHK = H by induction on the structure of H. If H is a
variable, say x, then JxK = x. If H is an abstraction, say λx.H ′, then H ′ is a head normal form.
By induction hypothesis, JH ′K = H ′. By point (3) we have Jλx.H ′K = λx.JH ′K = λx.H ′. Last,
if H is an application, say MN , then M must be of the form xP1 . . . Pn. By point (1), we have
JMNK = JxP1 . . . PnK(xP1 . . . Pn) · xP1 . . . PnN = xP1 . . . PnN .

5.1.2 Head reduction and head spine reduction
The rules in Figure 5.1 do not correspond to the standard head reduction of the λ-calculus, but
implement a variant of it, called head spine reduction in [84]. Both the head and head spine
reduction strategies can be introduced as probabilistic transition relations over Λ⊕, i.e. relations
R ⊆ Λ⊕ × [0, 1]× Λ⊕ such that, for all M ∈ Λ⊕,

∑
p,N s.t.M Rp N p ≤ 1 (see Section 2.5.2).

Definition 72 (Head and head spine reductions). We define → (head reduction) and 99K (head
spine reduction) as the following probabilistic transition relations over Λ⊕:

M →p N ,

M = E [(λy.P)Q], N = E [P [Q/y]], E ∈ HΛ⊕, p = 1,

or
M = E [P1 ⊕ P2], P1 6= P2, N = E [Pi], E ∈ HΛ⊕, p = 1

2 ,

or
M = E [P ⊕ P], N = E [P], E ∈ HΛ⊕, p = 1.

M 99Kp N ,

M = E [(λy.H)Q], N = E [H[Q/y]], H ∈ HNF, E ∈ HΛ⊕, p = 1,

or
M = E [(λy.P)Q], P 99Kp P ′, N = E [(λy.P ′)Q], E ∈ HΛ⊕,

or
M = E [P1 ⊕ P2], P1 6= P2, N = E [Pi], E ∈ HΛ⊕, p = 1

2 ,

or
M = E [P ⊕ P], N = E [P], E ∈ HΛ⊕, p = 1.

Let us state some remarkable properties concerning both the head and head spine reductions:

Lemma 98. Let M,N,L ∈ Λ⊕:

(1) Application: if M 99Kp N then ML 99Kp NL,

(2) Substitution: if M →p N then M [L/x]→p N [L/x],

(3) Abstraction: if M Rp N then λx.M Rp λx.N , for R ∈ {→, 99K}.

Proof. Straightforward.

Observe that the application property does not hold for the head reduction. For example,
λx.II →p λx.I, but (λx.II)I →p II 6= (λx.I)I. Also, the substitution property does not hold
for the head spine reduction. For example, if M , (λx.y)I then M 99Kp y but M [Ω/y] 99Kp
M [Ω/y] 6= y[Ω/y].

123

Let us see the difference between the two reduction strategies on a deterministic λ-term,
e.g. M , (λx.(λy.x)y)z. The (small-step) head reduction first evaluates the outermost redex
of M , getting (λy.z)y, and then the latter term, terminating in the head normal form z. The
(small-step) head spine reduction first evaluates the body of λx.(λy.x)y to a head normal form,
so getting the term λx.x and then it fires the application of the latter to the variable z, getting
z. The two reduction sequences are different but they give the same result (and actually with
the same number of reduction steps). We prove in Theorem 111 that this is always the case,
even in a probabilistic setting. Hence, the definition of J·K in Definition 71 is just another way of
presenting the operational semantics generated by the head reduction and discussed, for example,
in [35, 60, 61].

We decided to consider the head spine reduction for several reasons. First, because it has a
compact big-step presentation. Indeed, defining a big-step semantics based on the head reduction
strategy requires a further notion of value as well as a further approximation relation. On the
one hand, beside the head distributions D , we need distributions W of weak head normal forms,
i.e. terms which are either neutral or abstractions. On the other hand, beside the big-step
approximation relation based on the head reduction strategy, say ⇓h, we need another one for
the lazy call-by-name evaluation, we denote by ↓cbn. Then, for example, the big-step rule for the
application looks like the following:

M ↓cbn W {P [N/x] ⇓h DP,N}λx.P ∈ supp(W)

MN ⇓h

∑
λx.P ∈ supp(W) W (λx.P) ·DP,N +

∑
H ∈ supp(W)∩NEUT W (H) ·HN

The operational meaning of the above rule can be described as follows: whenever an ap-
plication MN is reached during the head reduction, M needs to be evaluated under a lazy
call-by-name policy until some weak head normal form is obtained; if the weak head normal
form is an abstraction λx.P , then we apply the head reduction on P [N/x].

Another reason why we introduced an operational semantics based on the head spine reduction
is because it fits perfectly into the Λ⊕-Markov chain definition, as we shall see in Remark 16. On
the one side, this allows us for a simpler proof of the Soundness Theorem (Theorem 126). On
the other side, the equivalence with the head reduction makes available the separation property
(here Theorem 129) that Leventis proved for the head reduction strategy [60] and that will play
a crucial role for completeness.

5.1.3 Context equivalence
A standard way of comparing terms is by observing their behaviours within contexts. Intuitively,
two terms M and N are considered as equivalent if any occurrence of M in another term L can
be replaced with N without changing the observable behaviour of L. The typical observation
in Λ⊕ is the probability of converging to a value. Since in this setting values are head normal
forms, context preorder ≤cxt and context equivalence =cxt can be defined as follows:

Definition 73 (Context equivalence). For every M,N ∈ Λ⊕:

(1) Context preorder : M ≤cxt N if and only if, for all C ∈ CΛ⊕,
∑

JC[M]K ≤
∑

JC[N]K;

(2) Context equivalence: M =cxt N if and only if, for all C ∈ CΛ⊕,
∑

JC[M]K =
∑

JC[N]K.

Note that M =cxt N if and only if M ≤cxt N and N ≤cxt M .

Example 26. Consider the terms M , λxyz.z(x ⊕ y) and N , λxyz.(zx ⊕ zy). They can be
discriminated by the context C , [·]ΩI∆, where Ω, I, and ∆ are as in Example 22. In Figure 5.3
we show that

∑
JC[M]K = 1

4 and
∑

JC[N]K = 1
2 .

124

. . .
M
⇓
M

. . .
λ
y
z
.z

(Ω
⊕
y
)
⇓
λ
y
z
.z

(Ω
⊕
y
)

. . .
λ
z
.z
h
id
⇓
λ
z
.z
h
id

. . .
∆
⇓

∆

s1
Ω
⇓
⊥

. . .
I
⇓

I
s5

h
id
⇓

1 2
·I

. . .
h
id
⇓

1 2
·I

s4
h
id
h
id
⇓

1 4
·I

s4
∆

h
id
⇓

1 4
·I

s4
(λ
z
.z
h
id

)∆
⇓

1 4
·I

s4
(λ
y
z
.z

(Ω
⊕
y
))

I∆
⇓

1 4
·I

s4
M

Ω
I∆
⇓

1 4
·I

s2
z
⇓
z

s4
z
x
⇓
z
x

s2
z
⇓
z

s4
z
y
⇓
z
y

s5
z
x
⊕
z
y
⇓

1 2
·z
x

+
1 2
·z
y

s3
N
⇓

1 2
·λ
x
y
z
.z
x

+
1 2
·λ
x
y
z
.z
y

s1
(λ
y
z
.z

Ω
)I

∆
⇓
⊥

. . .
λ
y
z
.z
y
⇓
λ
y
z
.z
y

. . .
λ
z
.z

I
⇓
λ
z
.z

I

. . .
∆
⇓

∆

. . .
I
⇓

I

. . .
I
⇓

I
s4

II
⇓

I
s4

∆
I
⇓

I
s4

(λ
z
.z

I)
∆
⇓

I
s4

(λ
y
z
.z
y
)I

∆
⇓

I
s4

N
Ω

I∆
⇓

1 2
·I

F
ig
ur
e
5.
3:

T
he

de
ri
va
ti
on

s
in

th
e
bi
g-
st
ep

se
m
an

ti
cs

of
M

Ω
I∆
⇓

1 4
·I

an
d
N

Ω
I∆
⇓

1 2
·I

,
w
he
re
M
,
λ
x
y
z
.z

(x
⊕
y
),
N
,

λ
x
y
z
.(
z
x
⊕
z
y
),

∆
=
λ
x
.x
x
,a

nd
h
id

=
Ω
⊕

I.
T
he

do
ub

le
in
fe
re
nc
e
lin

e
m
ea
ns

m
ul
ti
pl
e
ap

pl
ic
at
io
ns

of
th
e
sa
m
e
ru
le
.

125

Contexts enjoy the following monotonicity property:

Lemma 99. Let M,N ∈ Λ⊕:

(1) if JMK ≤D JNK then ∀C ∈ CΛ⊕, JC[M]K ≤D JC[N]K;

(2) if JMK = JNK then ∀C ∈ CΛ⊕, JC[M]K = JC[N]K.

Proof. Point (2) follows from point (1). Concerning the latter, we prove it by structural induction
on the context C ∈ CΛ⊕. The case C = [·] is trivial. Let C = λx.C′ and let D be such that
λx.C′[M] ⇓ D . By Proposition 97.(3) there exists D ′ such that C′[M] ⇓ D ′ and D ≤D λx.D ′. By
induction hypothesis, there exists E ′ such that C′[N] ⇓ E ′ and D ′ ≤D E ′. We define E , λx.E ′,
so that λx.C′[N] ⇓ E and D ≤D λx.D ′ ≤D λx.E ′ = E . We now consider the case C = C′L (the
case C = LC′ is similar). Let D be such that C′[M]L ⇓ D . By Proposition 97.(1), there exist head
distributions D ′ and {DH,L}λx.H ∈ supp(D′) such that C′[M] ⇓ D ′, {H[L/x] ⇓ DH,L}λx.H ∈ supp(D′),
and:

D ≤D

∑
λx.H ∈ supp(D′)

D ′(λx.H) ·DH,L +
∑

H ∈ supp(D′)∩NEUT

D ′(H) ·HL

By induction hypothesis, there exists a head distribution E ′ such that C′[N] ⇓ E ′ and D ′ ≤D E ′.
For all λx.H ∈ supp(E ′), we set:

EH,L ,

{
DH,L if λx.H ∈ supp(D ′),

⊥ otherwise.

E ,
∑

λx.H ∈ supp(E ′)

E ′(λx.H) · EH,L +
∑

H ∈ supp(E ′)∩NEUT

E ′(H) ·HL

Therefore, C′[N]L ⇓ E and D ≤D E . Finally, let us consider the case C = C′ ⊕ L (the case
C = L⊕C′ is symmetric). Let D be such that C′[M]⊕L ⇓ D . By Proposition 97.(4), there exist
D ′ and D ′′ such that C′[M] ⇓ D ′, L ⇓ D ′′ and D ≤D

1
2 ·D

′ + 1
2 ·D

′′. By induction hypothesis,
there exists E ′ such that C′[N] ⇓ E ′ and D ′ ≤D E ′. We define E = 1

2 · E
′ + 1

2 · D
′′, so that

C′[N]⊕ L ⇓ E and D ≤D
1
2 ·D

′ + 1
2 ·D

′′ ≤D
1
2 · E

′ + 1
2 ·D

′′ = E .

An immediate consequence of Lemma 99 is the soundness of the operational semantics:

Proposition 100. Let M,N ∈ Λ⊕:

(1) if JMK ≤D JNK then M ≤cxt N ,

(2) if JMK = JNK then M =cxt N .

Thanks to Proposition 100, one can prove that quite different terms are indeed context
equivalent, as the following example shows:

Example 27. The term MM in Example 25 and y are context equivalent, i.e. MM =cxt y,
since JMMK = y.

However, not all context equivalent terms have the same semantics:

Example 28. The term λx.x and its η-expansion λxy.xy are context equivalent but Jλx.xK =
λx.x 6= λxy.xy = Jλxy.xyK.

Proving context equivalence might be rather difficult since its definition quantifies over the
set of all contexts. Fortunately, various other tools can be deployed to show the equivalence of
terms. An example is bisimilarity, we shall discuss in the next subsection. Checking that two
terms are bisimilar requires the existence of a particular relation, called “bisimulation”. Proving
that bisimilarity and context equivalence actually coincide would imply that the latter can be
established using the much more tractable operational techniques coming from bisimilarity.

126

5.1.4 Probabilistic (bi)similarity
Following [27], we recall here the main definitions and basic properties about labelled Markov
chains and its associated probabilistic (bi)similarity [58], as these do not depend on a specific
operational semantics. In the next subsection, we shall apply these notions to the operational
semantics of Λ⊕, getting the probabilistic applicative (bi)similarity.

In Section 2.5.2 we introduced the basic definitions and conventions concerning relations. So,
for example, R(X) stands for the image of X under R, Rop is the converse of R, and X/R
denotes the set of all equivalence classes modulo R, provided that the latter is an equivalence
relation.

Definition 74 (Labelled Markov chain). A labelled Markov chain is a triple M = (S,L,P),
where S is a countable set of states, L is a set of labels (actions) and P is a transition probability
matrix, i.e. a function P : S × L × S −→ [0, 1] satisfying the following condition:

∀s ∈ S, ∀l ∈ L :
∑
t∈S
P(s, l, t) ≤ 1.

We let the expression P(s, l,X) denote
∑
t∈X P(s, l, t).

Probabilistic simulation and probabilistic bisimulation can be defined as follows:

Definition 75 (Probabilistic (bi)simulation). Let (S,L,P) be a labelled Markov chain and R
be a relation over S:

(1) R is a probabilistic simulation if it is a preorder and it satisfies the following condition:

∀(s, t) ∈ R, ∀X ⊆ S, ∀l ∈ L : P(s, l,X) ≤ P(t, l,R(X)).

(2) R is a probabilistic bisimulation if it is an equivalence and it satisfies the following condition:

∀(s, t) ∈ R, ∀E ∈ S/R, ∀l ∈ L : P(s, l, E) = P(t, l, E).

Probabilistic (bi)similarity is the union of all probabilistic (bi)simulations.

Definition 76 (Probabilistic (bi)similarity). Let (S,L,P) be a labelled Markov chain. Then,
for all s, t ∈ S:

(1) Probabilistic similarity : s � t if and only if ∃R probabilistic simulation such that s R t;

(2) Probabilistic bisimilarity : s ∼ t if and only if ∃R probabilistic bisimulation such that s R t.

We shall prove that both - and ∼ are in turn, respectively, a probabilistic simulation and a
probabilistic bisimulation. Now, a probabilistic bisimulation has to be, by definition, an equiva-
lence relation, and the union of two equivalence relations is not in general an equivalence relation.
The following is a standard way to overcome the problem:

Lemma 101. If {Ri}i∈I is a collection of probabilistic bisimulations, then also their reflexive
and transitive closure (

⋃
i∈I Ri)∗ is a probabilistic bisimulation.

Proof. Let us fix T , (
⋃
i∈I Ri)∗, which is by definition reflexive and transitive. Let us prove

that T is symmetric. If (s, t) ∈ T then there are n ≥ 0 states v0, . . . , vn such that v0 = s,
vn = t and, for all 1 ≤ i ≤ n, there exists j ∈ I such that (vi−1,vi) ∈ Rj . By the symmetry
of each of the Rj , we easily get that (vi, vi−1) ∈ Rj . As a consequence, we have (t, s) ∈ T .
Now, let (s, t) ∈ T , l ∈ L, and E ∈ S/T . Then, there are n ≥ 0 states v0, . . . , vn such that
v0 = s, vn = t and, for all 1 ≤ i ≤ n, there exists j ∈ I such that (vi−1,vi) ∈ Rj . We have
P(s, l, E) = P(v0, l, E) = . . . = P(vn, l, E) = P(t, l, E).

127

Proposition 102. The relation ∼ is a probabilistic bisimulation.

Proof. By Lemma 101, (∼)∗ is a probabilistic bisimulation, so that it suffices to prove that
∼= (∼)∗. On the one hand, we clearly have ∼⊆ (∼)∗. On the other hand, since (∼)∗ is a
probabilistic bisimulation, it is included in the union of them all, that is, ∼.

The following lemma is analogous to Lemma 101.

Lemma 103. If {Ri}i∈I is a collection of probabilistic simulations, then also their reflexive and
transitive closure (

⋃
i∈I Ri)∗ is a probabilistic simulation.

Proof. R , (
⋃
i∈I Ri)∗ is a preorder by construction. So, let (s, t) ∈ R, and let l ∈ L and X ⊆ S.

Then there are n ≥ 0 states v0, . . . , vn such that v0 = s, vn = t and, for all 1 ≤ i ≤ n, there
exists ji ∈ I such that vi−1Rji vi. As a consequence, for every l ∈ L and for every X ⊆ S, we
have:

P(v0, l, X) ≤ P(v1, l,Rj1(X)) ≤ P(v2, l,Rj2(Rj1(X))) ≤ . . .
. . . ≤ P(vn, l,Rjn(. . . (Rj2(Rj1(X)))))

Since by definition Rjn(. . . (Rj2(Rj1(X)))) ⊆ R(X), we have P(s, l,X) ≤ P(t, l,R(X)).

Proposition 104. The relation - is a probabilistic simulation.

Proof. Similar to Proposition 102.

We now prove that ∼ = - ∩-op. To begin with, we prove some preliminary lemmas.

Lemma 105. If R is a symmetric probabilistic simulation, then R is a probabilistic bisimulation.

Proof. If R is a symmetric probabilistic simulation, by definition, it is an equivalence relation.
Now, let (s, t) ∈ R, l ∈ L, and E ∈ S/R. On the one hand, since R is a probabilistic simulation,
we have P(s, l, E) ≤ P(t, l,R(E)), but R(E) = E. Since R is symmetric, we also have (t, s) ∈ R,
which implies P(t, l, E) ≤ P(s, l, E).

Lemma 106. If R is a probabilistic bisimulation, then R and Rop are probabilistic simulations.

Proof. Notice that, since R is symmetric by assumption, if R is a probabilistic simulation then
Rop is a probabilistic simulation. So, let us prove that R is a probabilistic simulation. Clearly,
it is a preorder. Let (s, t) ∈ R, l ∈ L, and X ⊆ S. Consider the family {Xi}i∈I of all equivalence
subclasses modulo R contained in X, i.e. for all i ∈ I, we have Xi ⊆ Ei ∈ S/R and X =

⊎
i∈I Xi.

As a consequence, R(X) =
⊎
i∈I Ei. Therefore, we have:

P(s, l,X) =
∑
i∈I
P(s, l,Xi) ≤

∑
i∈I
P(s, l, Ei) =

∑
i∈I
P(t, l, Ei) = P(t, l,R(X)).

Proposition 107. It holds that ∼ = - ∩-op.

Proof. The fact that ∼ is a subset of - ∩ -op is a straightforward consequence of Lemma 106.
Let us now prove the converse, i.e. that - ∩ -op is a probabilistic bisimulation. Clearly, it is
an equivalence relation. Now, let (s, t) ∈ (- ∩ -op), l ∈ L, and E ∈ S/(- ∩ -op). Define the
following two sets of states X , -(E) and Y , X − E. Observe that Y and E are disjoint sets
of states whose union is precisely X. Moreover, notice that both X and Y are closed w.r.t. -:

• On the one hand, if s ∈ -(X), then s ∈ -(-(E)) = -(E) = X;

128

• On the other hand, if s ∈ -(Y) = -(X − E), then there is t ∈ X which is not in E such
that t - s. But then s is itself in X by the previous point. Moreover, s cannot be in E
because, otherwise, from t ∈ X = -(E) we would have s - t, meaning that s and t are in
the same equivalence class modulo - ∩-op, so that t ∈ E. A contradiction.

As a consequence, we have:

P(s, l,X) ≤ P(t, l,-(X)) = P(t, l,X)

P(t, l,X) ≤ P(s, l,-(X)) = P(s, l,X)

Hence, P(s, l,X) = P(t, l,X) and, similarly, P(s, l, Y) = P(t, l, Y). Therefore, P(s, l, E) =
P(s, l,X)− P(s, l, Y) = P(t, l,X)− P(t, l, Y) = P(t, l, E).

5.1.5 Probabilistic applicative (bi)similarity
In order to apply probabilistic (bi)similarity to Λ⊕, we need to present its operational semantics
as a labelled Markov chain (Definition 77). Intuitively, terms are seen as states, while labels
are of two kinds: one can either evaluate a term (this kind of transition will be labelled by τ),
obtaining a distribution of head normal forms, or apply a head normal form to a term M (this
kind of transition will be labelled by M).

This idea has been first developed in the standard λ-calculus by Abramsky [1], who called
the corresponding notion of bisimilarity “applicative”. Applicative bisimilarity has been then
studied in the probabilistic λ-calculus for several reduction strategies like, for example, lazy call-
by-name (Dal Lago et al. [27]) and call-by-value (Crubillé and Dal Lago [22]). The benefit of this
approach is to check program equivalence via an existential quantifier (Definition 76.(2)) rather
than a universal one, as in the case of context equivalence (Definition 73.(2)).

For technical reasons, it is useful to consider only closed terms and to consider for each
closed head normal form H = λx.H ′ two distinct representations, depending on the way we
consider it: either as a term or properly as a normal form, and in the latter case we indicate it as
H̃ , νx.H ′ to stress the difference. Consequently, we define H̃NF as the set of all “distinguished”
closed head normal form, namely {H̃ | H ∈ HNF∅}. More in general, if X ⊆ HNF∅, we define
X̃ , {H̃ | H ∈ X}.

Definition 77 (Λ⊕-Markov chain). The Λ⊕-Markov chain is the triple (Λ∅⊕] H̃NF, Λ∅⊕]
{τ}, P⊕), where the set of states is the disjoint union of the set of closed terms and the set
of “distinguished” closed head normal forms, labels (actions) are either closed terms or the τ
action, and the transition probability matrix P⊕ is defined in the following way:

(i) for every closed term M and distinguished head normal form νx.H:

P⊕(M, τ, νx.H) , JMK(λx.H),

(ii) for every closed term M and distinguished head normal form νx.H:

P⊕(νx.H,M,H[M/x]) , 1,

(iii) in all other cases, P⊕ returns 0.

Remark 16. In the Λ⊕-Markov chain, a termM can be thought of as at the head of a (potentially
infinite) stack of applications, where at each time we first evaluate the head of the stack until
we reach a head normal form H (point (i)), and then we apply H to the next term of the
stack (point (ii)). This is exactly the behaviour of the head spine reduction on an application
MN1 . . . Nn. Lemma 125 formalizes these intuitions.

129

Since Λ⊕ can be seen as a labelled Markov chain, simulation and bisimulation can be defined
as well:

Definition 78 (PAS and PAB). A probabilistic applicative (bi)simulation is a probabilistic
(bi)simulation of the Λ⊕-Markov chain. The probabilistic applicative similarity, PAS for short,
and the probabilistic applicative bisimilarity, PAB for short, are defined as in Definition 76.(1)
and Definition 76.(2).

From now on, with - (resp. ∼) we mean probabilistic applicative similarity (resp. bisimilar-
ity).

The notions of PAS and PAB are defined on closed terms. We extend them to open terms in
the following way:

Definition 79 (PAS and PAB for open terms). Let M,N ∈ Λ
{x1,...,xn}
⊕ . Then:

(1) M - N if and only if λx1 . . . xn.M - λx1 . . . xn.N .

(2) M ∼ N if and only if λx1 . . . xn.M ∼ λx1 . . . xn.N .

One can notice that the order of the abstractions in the term closure does not affect the
obtained relation.

The following proposition is analogous to Proposition 100, stating the soundness of the op-
erational semantics with respect to both PAS and PAB.

Proposition 108. Let M,N ∈ Λ⊕:

(1) if JMK ≤D JNK then M - N ,

(2) if JMK = JNK then M ∼ N .

Proof. We prove only the inequality soundness, as the equality one is an immediate consequence
by Proposition 107. Let us first show point (1) for closed terms. So, suppose M,N ∈ Λ∅⊕
be such that JMK ≤D JNK, and consider the relation R = {(P,Q) ∈ Λ∅⊕ × Λ∅⊕ | JP K ≤D

JQK} ∪ {(νx.H, νx.H) ∈ H̃NF × H̃NF}. If we show that R is a PAS, then R ⊆ -, and hence
M - N . Clearly, R is a preorder. Now, let (P,Q), (νx.H, νx.H) ∈ R, and let X ⊆ Λ∅⊕ ∪ H̃NF.
It is straightforward that P⊕(νx.H, l,X) ≤ P⊕(νx.H, l,R(X)), for all l ∈ Λ∅⊕ ∪ {τ}. Moreover,
for all F ∈ Λ∅⊕ we have 0 = P⊕(P, F,X) ≤ P⊕(Q,F,R(X)). Last:

P⊕(P, τ,X) =
∑

νx.H∈X
P⊕(P, τ, νx.H) = JP K(X ∩HNF)

≤ JQK(X ∩HNF) = P⊕(Q, τ,R(X))

Hence, for all l ∈ Λ∅⊕ ∪ {τ} and X ⊆ Λ∅⊕ ∪ H̃NF, we have P⊕(P, l,X) ≤ P⊕(Q, l,R(X)).
Now, let M,N ∈ Λ

{x1,...,xn}
⊕ be such that JMK ≤D JNK. This means that λx1 . . . xn.JMK ≤D

λx1 . . . xn.JNK, and hence Jλx1 . . . xn.MK ≤D Jλx1 . . . xn.NK by Proposition 97.(3). Since these
terms are closed, we have λx1 . . . xn.M - λx1 . . . xn.N . By Definition 79, M - N .

Example 29. Let us show that I ∼ λxy.xy so that, from the soundness (Theorem 126),
one can infer I =cxt λxy.xy. Let us define R1 ,

{
(I, λxy.xy), (λxy.xy, I)

}
, as well as R2 ,{

(̃I, νx.λy.xy), (νx.λy.xy, Ĩ)
}
and R3 , ∼. Let R , (R1 ∪R2 ∪R3)∗. Since R1 ∪R2 ∪R3 is a

symmetric relation, then its reflexive and transitive closure R , (R1 ∪R2 ∪R3)∗ is an equiva-
lence. Let us prove that it is a probabilistic bisimulation. We have to prove that P⊕(M, l, E) =

130

P⊕(N, l, E), ∀(M,N) ∈ R, ∀E ∈ (Λ∅⊕ ∪ H̃NF)/R, ∀l ∈ Λ∅⊕ ∪ {τ}. Notice that, if this holds
for (M,N) ∈ (R1 ∪R2 ∪R3), then we are done. Indeed, suppose (M,N) ∈ R. Then there
exists n ≥ 0 and P0, . . . , Pn ∈ Λ∅⊕ ∪ H̃NF such that P0 = M , Pn = N and Pi−1RjiPi for
every 1 ≤ i ≤ n, where 1 ≤ ji ≤ 3. Hence, we have P⊕(M, l,E) = P⊕(P0, l, E) = . . . =

P⊕(Pn, l, E) = P⊕(N, l, E), ∀E ∈ (Λ∅⊕ ∪ H̃NF)/R, ∀l ∈ Λ∅⊕ ∪ {τ}. Let us now show the case
(M,N) ∈ (R1 ∪R2 ∪R3). If (M,N) ∈ R3 we just apply Proposition 102. Otherwise, it suffices
to consider (I, λxy.xy) and (̃I, νx.λy.xy). Recall that, by Definition 77, P⊕(M,N,E) = 0 and
P⊕(H̃, τ, E) = 0, for all M,N ∈ Λ∅⊕, H̃ ∈ H̃NF and E ∈ (Λ∅⊕∪ H̃NF)/R. On the one hand, since
(̃I, νx.λy.xy) ∈ R, we have Ĩ ∈ E if and only if νx.λy.xy ∈ E, for all E ∈ (Λ∅⊕∪H̃NF)/R. This im-
plies P⊕(I, τ, E) = P⊕(λxy.xy, τ, E), for all E ∈ (Λ∅⊕∪ H̃NF)/R. On the other hand, since terms
are considered modulo renaming of bound variables, by Proposition 97 we have JNK = Jλy.NyK,
for all N ∈ Λ∅⊕ (notice that this equality may fail if N has free variables). By Proposition 108,
N ∼ λy.Ny, and hence N ∈ E if and only if λy.Ny ∈ E, for all E ∈ (Λ∅⊕ ∪ H̃NF)/R. This
implies P⊕(̃I, N,E) = P⊕(νx.λy.xy,N,E), for all N ∈ Λ∅⊕ and for all E ∈ (Λ∅⊕ ∪ H̃NF)/R.

Example 30. We show that the terms M , λxyz.z(x ⊕ y) and N , λxyz.(zx ⊕ zy) in
Example 26 are not bisimilar. Indeed, suppose for the sake of contradiction that a proba-
bilistic bisimulation R such that (M,N) ∈ R exists. By definition R is an equivalence re-
lation. Let E ∈ (Λ∅⊕ ∪ H̃NF)/R be such that νx.λyz.z(x ⊕ y) ∈ E. Then it must be that
P⊕(M, τ,E) = 1 = P⊕(N, τ,E), and it follows that both νx.λyz.zx and νx.λyz.zy are in E,
so that (νx.λyz.z(x ⊕ y), νx.λyz.zx) ∈ R. Then it must be that P⊕(νx.λyz.z(x ⊕ y),Ω, E1) =

1 = P⊕(νx.λyz.zx,Ω, E1), for some E1 ∈ (Λ∅⊕ ∪ H̃NF)/R containing both λyz.z(Ω ⊕ y) and
λyz.zΩ ∈ E1, which implies (λyz.z(Ω⊕ y), λyz.zΩ) ∈ R. By a similar reasoning, we get that R
contains the pairs (νy.λz.z(Ω ⊕ y), νy.λz.zΩ), (λz.z(Ω ⊕ I), λz.zΩ), and (νz.z(Ω ⊕ I), νz.zΩ).
Now, let E2 be an equivalence class containing I(Ω ⊕ I). From P⊕(νz.z(Ω ⊕ I), I, E2) = 1 =
P⊕(νz.zΩ, I, E2) we get that IΩ ∈ E2, i.e. (I(Ω ⊕ I), IΩ) ∈ R. Finally, if E3 is an equivalence
class such that νx.x ∈ E3, then P⊕(I(Ω⊕I), τ, E3) = 1

2 = P⊕(IΩ, τ, E3). This is a contradiction,
since P⊕(IΩ, τ, E3) = 0. Therefore, the terms M and N are not bisimilar.

5.2 The head spine reduction is equivalent to the head re-
duction

In the previous section we endowed the probabilistic λ-calculus with the big-step operational
semantics J·K introduced via the head spine reduction (Definition 71). This kind of semantics
is often called “distribution-based” (see [19]), since it involves a relation between terms and
distributions. The distribution-based semantics are opposed to the “term-based” ones (see [32]),
which consider relations between terms weighted with probabilities. Examples of term-based
semantics are the small-steps presentations of the head and head spine reduction strategies we
gave in Definition 72.

In this section we show that the head and head spine reduction strategies yield the same
operational semantics. First, we prove this property in a “term-based” setting, i.e. by considering
the probabilistic transition relations in Definition 72. Actually, we shall establish an even stronger
result: for all n ∈ N the probability that a term converges to a fixed head normal form in exactly
n steps is the same for both strategies (Theorem 111). Then, we shall prove that the probabilistic
transition relation corresponding to the head spine evaluation generates exactly the distribution-
based semantics J·K (Theorem 115).

131

5.2.1 Equivalence in a term-based setting
The following definition introduces the probability of convergence for both the head and head
spine reduction strategies in a term-based setting.

Definition 80 (H∞ and S∞). Let M ∈ Λ⊕, H ∈ HNF and n ∈ N. We define the probabil-
ity Hn(M,H) (resp. Sn(M,H)) that M converges to H in exactly n steps of head reduction
(resp. head spine reduction) as follows:

Hn(M,H) ,
∑

(M0,...,Mn) s.t. M0=M,
Mn=H, ∀i<nMi→pi+1

Mi+1

n∏
i=1

pi Sn(M,H) ,
∑

(M0,...,Mn) s.t. M0=M,
Mn=H, ∀i<nMi99Kpi+1

Mi+1

n∏
i=1

pi

The probability H∞(M,H) (resp. S∞(M,H)) that M converges to H in an arbitrary number
of steps of head reduction (resp. head spine reduction) is defined as follows:

H∞(M,H) ,
∞∑
n=0

Hn(M,H) S∞(M,H) ,
∞∑
n=0

Sn(M,H).

We now state and prove some basic properties about Hn and Sn.

Lemma 109. Let M,N ∈ Λ⊕ and H ∈ HNF.

(1) If either X = H and R =→, or X = S and R = 99K, then:

• if n = 0 and M = H then Xn(M,H) = 1;

• if n > 0 and M R1 M
′ then Xn(M,H) = Xn−1(M ′, H);

• if n > 0,M R 1
2
M ′,M R 1

2
M ′′, then Xn(M,H) = 1

2 ·X
n−1(M ′, H)+ 1

2 ·X
n−1(M ′′, H);

• in all other cases, Xn(M,H) = 0.

(2) For all n ∈ N, Hn(λx.M, λx.H) = Hn(M,H) and Sn(λx.M, λx.H) = Sn(M,H).

(3) For all n ∈ N, Hn(M [N/x], H) =
∑
l+l′=n

∑
H′∈HNFHl(M,H ′) · Hl′(H ′[N/x], H).

(4) For all n ∈ N, Sn(MN,H) =
∑
l+l′=n

∑
H′∈HNF Sl(M,H ′) · Sl′(H ′N,H).

Proof. Concerning point (1), we just prove the case where n > 0, M → 1
2
M ′ and M → 1

2
M ′′:

Hn(M,H) =
∑

(M0,...,Mn) s.t. M0=M,
Mn=H, ∀i<nMi→pi+1

Mi+1

n∏
i=1

pi

=
1

2
·

(∑
(M0,...,Mn−1) s.t. M0=M ′,

Mn−1=H, ∀i<n−1Mi→pi+1
Mi+1

n−1∏
i=1

pi

)

+
1

2
·

(∑
(M0,...,Mn−1) s.t. M0=M ′′,

Mn−1=H, ∀i<n−1Mi→pi+1
Mi+1

n−1∏
i=1

pi

)

=
1

2
· Hn−1(M ′, H) +

1

2
· Hn−1(M ′′, H).

132

Concerning point (2), for all n ∈ N we have:

Hn(M,H) =
∑

(M0,...,Mn) s.t. M0=M,
Mn=H, ∀i<nMi→pi+1

Mi+1

n∏
i=1

pi

=
∑

(λx.M0,...,λx.Mn) s.t. λx.M0=λx.M,
λx.Mn=λx.H, ∀i<nλx.Mi→pi+1

λx.Mi+1

n∏
i=1

pi = Hn(λx.M, λx.H).

We prove the equation Sn(M,H) = Sn(λx.M, λx.H) in a similar way.
Let us now prove point (3) by induction on n ∈ N. We have three cases:

• If M is a head normal form, then Hl(M,H ′) 6= 0 just when l = 0 and H ′ = M . In all
cases, the equation holds.

• Suppose M → 1
2
M1 and M → 1

2
M2. If n = 0 then the equation trivially holds. Otherwise,

by Lemma 98.(2) we have M [N/x]→ 1
2
M1[N/x] and M [N/x]→ 1

2
M2[N/x]. Therefore:

Hn(M [N/x], H) =
1

2
· Hn−1(M1[N/x], H) +

1

2
· Hn−1(M2[N/x], H) point (1)

=
1

2
·
∑

l+l′=n−1

∑
H′∈HNF

Hl(M1, H
′) · Hl

′
(H ′[N/x], H)

+
1

2
·
∑

l+l′=n−1

∑
H′∈HNF

Hl(M2, H
′) · Hl

′
(H ′[N/x], H) IH

=
∑

l+l′=n−1

∑
H′∈HNF

Hl+1(M,H ′) · Hl
′
(H ′[N/x], H) point (1)

=
∑

l+l′=n

∑
H′∈HNF

Hl(M,H ′) · Hl
′
(H ′[N/x], H).

• If M →1 M
′ then we proceed similarly.

Finally we prove point (4) by induction on n ∈ N. We have three cases:

• If M is a head normal form, then Sn(M,H ′) 6= 0 whenever n = 0 and H ′ = M . In all
cases, the equation holds.

• Suppose M 99K 1
2
M1 and M 99K 1

2
M2. If n = 0 then the equation trivially holds. Other-

wise, by Lemma 98.(1) we have MN 99K 1
2
M1N and MN 99K 1

2
M2N . Therefore:

Sn(MN,H) =
1

2
· Sn−1(M1N,H) +

1

2
· Sn−1(M2N,H) point (1)

=
1

2
·
∑

l+l′=n−1

∑
H′∈HNF

Sl(M1, H
′) · Sl

′
(H ′N,H)

+
1

2
·
∑

l+l′=n−1

∑
H′∈HNF

Sl(M2, H
′) · Sl

′
(H ′N,H) IH

=
∑

l+l′=n−1

∑
H′∈HNF

Sl+1(M,H ′) · Sl
′
(H ′N,H) point (1)

=
∑

l+l′=n

∑
H′∈HNF

Sl(M,H ′) · Sl
′
(H ′N,H).

133

• If M 99K1 M ′, we proceed similarly.

For all n ∈ N, we can construct the probabilistic transition relation→n (resp. 99Kn) from the
probabilistic transition relation → (resp 99K) of Definition 72 (see Section 2.5.2).

Lemma 110. If M 99Kp M ′ then there exists n0 ∈ N and M0 ∈ Λ⊕ such that M →n0+1
p M0

and M ′ →n0
1 M0. Diagrammatically:

M M ′

M0

p

p

n0+1

1

n0

Proof. By induction on the structure of M . M cannot be a head normal form, so that we have
three cases:

• M = E [(λy.H)Q], where H ∈ HNF and E = λ~x.[·]~L ∈ HΛ⊕. Then, M ′ = E [H[Q/y]], and
we set n0 , 0 and M0 ,M ′.

• M = E [(λy.P)Q], where P 99Kp P ′ and E = λ~x.[·]~L ∈ HΛ⊕. Then, M ′ = E [(λy.P ′)Q]. By
repeatedly applying Lemma 98.(1), P ~L 99Kp P ′~L. By induction hypothesis, there exist n′0
and P0 such that P ~L→n′0+1

p P0 and P ′~L→n′0
1 P0. By repeatedly applying Lemma 98.(2),

we have that P [Q/y]~L→n′0+1
p P0[Q/y] and P ′[Q/y]~L→n′0

1 P0[Q/y], since y is not free in ~L.
Moreover, by repeatedly applying Lemma 98.(3), we have E [P [Q/y]]→n′0+1

p λ~x.P0[Q/y] and
E [P ′[Q/y]]→n′0

1 λ~x.P0[Q/y]. We set n0 , n′0 + 1 and M0 , λ~x.P0[Q/y]. On the one hand,
E [(λy.P)Q] →1 E [P [Q/y]] →n′0+1

p λ~x.P0[Q/y] and, on the other hand, E [(λy.P ′)Q] →1

E [P ′[Q/y]]→n′0
1 λ~x.P0[Q/y].

• M = E [P1 ⊕ P2], where E = λ~x.[·]~L ∈ HΛ⊕. Then, M ′ = E [Pi]. We set n0 , 0 and
M0 ,M ′.

The head and head spine reductions rewrite a given term to a given head normal form with the
same probability. Even better, the probability of converging to this head normal form remains
the same when reductions of a fixed length are considered.

Theorem 111 (Hn = Sn). Let M ∈ Λ⊕ and H ∈ HNF. Then, for all n ∈ N:

Sn(M,H) = Hn(M,H).

Proof. By induction on n. If n = 0 then S0(M,H) = H0(M,H) by definition. Suppose n > 0.
If M is a head normal form, then Sn(M,H) = 0 = Hn(M,H). Otherwise, we can apply a head
spine reduction step to M . If M 99K1 M ′ then, by Lemma 110, there exist n0 and M0 such that:

M →n0+1
1 M0 M ′ →n0

1 M0

Moreover, by induction hypothesis and by Lemma 109.(1) we have Sn(M,H) = Sn−1(M ′, H) =
Hn−1(M ′, H). If n0 ≤ n − 1 then Hn−1(M ′, H) = Hn−1−n0(M0, H) = Hn(M,H). Otherwise,
n− 1 < n0 and Hn−1(M,H) = 0 = Hn(M,H).

134

If M 99K 1
2
M ′ and M 99K 1

2
M ′′ then, by Lemma 110, there exist n′0, n′′0 and M ′0,M

′′
0 such

that:
M →n′0+1

1
2

M ′0 M ′ →n′0
1 M ′0

M →n′′0 +1
1
2

M ′′0 M ′′ →n′′0
1 M ′′0

Then, there exist N , N ′ and N ′′ such that:

M →t
1 N N → 1

2
N ′ →t′

1 M ′0 N → 1
2
N ′′ →t′′

1 M ′′0

where n′0 = t+ t′ and n′′0 = t+ t′′. By induction hypothesis and by Lemma 109.(1):

Sn(M,H) =
1

2
· Sn−1(M ′, H) +

1

2
· Sn−1(M ′′, H)

=
1

2
· Hn−1(M ′, H) +

1

2
· Hn−1(M ′′, H)

and we have four cases:

• If n′0, n′′0 ≤ n− 1 then, by using Lemma 109.(1):

Hn(M,H) = Hn−t(N,H)

=
1

2
· Hn−(t+1)(N ′, H) +

1

2
· Hn−(t+1)(N ′′, H)

=
1

2
· Hn−(n′0+1)(M ′0, H) +

1

2
· Hn−(n′′0 +1)(M ′′0 , H)

=
1

2
· Hn−1(M ′, H) +

1

2
· Hn−1(M ′′, H).

• If n′0 ≤ n− 1 and n− 1 < n′′0 then, by using Lemma 109.(1):

Hn(M,H) = Hn−t(N,H)

=
1

2
· Hn−(t+1)(N ′, H) +

1

2
· Hn−(t+1)(N ′′, H)

=
1

2
· Hn−(n′0+1)(M ′0, H) =

1

2
· Hn−1(M ′, H)

=
1

2
· Hn−1(M ′, H) +

1

2
· Hn−1(M ′′, H).

• The case where n− 1 < n′0 and n′′0 ≤ n− 1 is similar to the previous one.

• If n− 1 < n′0, n
′′
0 then Hn(M,H) = 0 = 1

2 · H
n−1(M ′, H) + 1

2 · H
n−1(M ′′, H).

5.2.2 The term-based and the distribution-based semantics coincide
What we have established so far is an equivalence between the head and head spine reductions
in a “term-based” operational semantics introduced through the notion of probabilistic transition
relation. We are going to show that the term-based and the distribution-based semantics for the
head spine reduction coincide. This allows us to show that the big-step semantics introduced in
Definition 71 is invariant with respect to the usual head reduction step (λx.M)N → M [N/x],
where M is not necessarily a head normal form.

135

Lemma 112. Let M ∈ Λ⊕. For all H ∈ HNF, JMK(H) ≤ S∞(M,H).

Proof. We show that, for all D such that M ⇓ D and for all H ∈ HNF, it holds that D(H) ≤
S∞(M,H). The proof is by induction on the derivation of M ⇓ D by considering the structure
of M . Since the case D = ⊥ is trivial, we shall assume that the last rule of M ⇓ D is not s1:

• If M = x then D = x and the last rule of M ⇓ D is s2. If H 6= x then D(H) = 0.
Otherwise, D(x) = 1 = S∞(x, x).

• If M = λx.M ′ then D = λx.D ′ and the last rule of M ⇓ D is the following:

M ′ ⇓ D ′
s3

λx.M ′ ⇓ λx.D ′

If H ∈ NEUT then D(H) = 0. Otherwise, H = λx.H ′ and, by using the induction
hypothesis and Lemma 109.(2), we have:

D(H) = (λx.D ′)(λx.H ′) = D ′(H ′) ≤ S∞(M ′, H ′) = S∞(λx.M ′, λx.H ′).

• If M = PQ then the last rule of M ⇓ D is as follows:

P ⇓ E {H ′[Q/x] ⇓ FH′,Q}λx.H′ ∈ supp(E)
s4

PQ ⇓
∑
λx.H′ ∈ supp(E) E (λx.H ′) ·FH′,Q +

∑
H′ ∈ supp(E)∩NEUT E (H ′) ·H ′Q

By using the induction hypothesis, Lemma 109.(1) and Lemma 109.(4), we have:∑
λx.H′ ∈ supp(E)

E (λx.H ′) ·FH′,Q(H) +
∑

H′ ∈ supp(E)∩NEUT

E (H ′) ·H ′Q(H) =

≤
∑

λx.H′ ∈HNF

S∞(P, λx.H ′) · S∞(H ′[Q/x], H) +
∑

H′ ∈NEUT

S∞(P,H ′) · S∞(H ′Q,H ′)

≤
∑

λx.H′ ∈HNF

S∞(P, λx.H ′) · S∞((λx.H ′)Q,H) +
∑

H′ ∈NEUT

S∞(P,H ′) · S∞(H ′Q,H ′)

=
∑

H′ ∈HNF

S∞(P,H ′) · S∞(H ′Q,H) = S∞(PQ,H)

and hence D(H) ≤ S∞(PQ,H).

• If M = P ⊕Q then D = 1
2 ·D1 + 1

2 ·D2 and the last rule of M ⇓ D is as follows:

P ⇓ D1 Q ⇓ D2
s5

P ⊕Q ⇓ 1
2 ·D1 + 1

2 ·D2

By using the induction hypothesis and by Lemma 109.(1), we have:

D(H) =
1

2
·D1(H) +

1

2
·D2(H) ≤ 1

2
· S∞(P,H) +

1

2
· S∞(Q,H) = S∞(P ⊕Q,H).

Lemma 113. Let M ∈ Λ⊕:

136

(1) if M 99K1 M ′ and M ′ ⇓ D , then M ⇓ D ;

(2) if M 99K 1
2
M1, M 99K 1

2
M2, M1 ⇓ D1 and M2 ⇓ D2, then there exists D such that

1
2 ·D1 + 1

2 ·D2 ≤ D and M ⇓ D .

Proof. We prove both points simultaneously by induction on the structure of M . If M is not a
head normal form, then there exists a head context E such thatM = E [P] and, either P 99K1 P ′,
or both P 99K 1

2
P1 and P 99K 1

2
P2. By looking at the structure of M we have several cases:

• If E = [·] then we have three subcases:

(a) If M = (λx.H)N , then it must be that M 99K1 M ′ = H[N/x]. From M ′ ⇓ D we can
construct:

s2
λx.H ⇓ λx.H H[N/x] ⇓ D

s4
(λx.H)N ⇓ D

(b) Suppose M = (λx.Q)N with Q 6∈ HNF. We consider the case where Q 99K 1
2
Q1 and

Q 99K 1
2
Q2. W.l.o.g. we can assume that, for i ∈ {1, 2}, the last rule of the derivation

of (λx.Qi)N ⇓ Di is as follows:

Qi ⇓ Ei
s3

λx.Qi ⇓ λx.Ei {H[N/x] ⇓ F i
H,N}λx.H ∈ supp(λx.Ei)

s4
(λx.Qi)N ⇓

∑
λx.H ∈ supp(λx.Ei)

(λx.Ei)(λx.H) ·F i
H,N

By applying the induction hypothesis, there exists E such that Q ⇓ E and 1
2 · E1 + 1

2 ·
E2 ≤ E . By Lemma 96, for all H ∈ supp(E1) ∩ supp(E2) there exists GH,N such that
H[N/x] ⇓ GH,N and F 1

H,N ,F
2
H,N ≤ GH,N . We define:

FH,N ,

F i
H,N if, for i ∈ {1, 2}, H ∈ supp(Ei) and H 6∈ supp(E3−i),

GH,N if H ∈ supp(E1) ∩ supp(E2),

⊥ otherwise.

For all H ∈ supp(E), we have H[N/x] ⇓ FH,N . Moreover, for all i ∈ {1, 2} and
H ∈ supp(Ei), F i

H,N ≤ FH,N . We define D ,
∑
λx.H ∈ supp(λx.E)(λx.E)(λx.H)·FH,N ,

so that (λx.Q)N ⇓ D and:

1

2
·D1 +

1

2
·D2 =

1

2
·

∑
λx.H ∈ supp(λx.E1)

(λx.E1)(λx.H) ·F 1
H,N

+
1

2
·

∑
λx.H ∈ supp(λx.E2)

(λx.E2)(λx.H) ·F 2
H,N

=
1

2
·

∑
H ∈ supp(E1)

E1(H) ·F 1
H,N +

1

2
·

∑
H ∈ supp(E2)

E2(H) ·F 2
H,N

≤ 1

2
·

∑
H ∈ supp(E1)

E1(H) ·FH,N +
1

2
·

∑
H ∈ supp(E2)

E2(H) ·FH,N

=
∑

H ∈ supp(E)

(
1

2
· E1 +

1

2
· E2

)
(H) ·FH,N

137

≤
∑

H ∈ supp(E)

E (H) ·FH,N =
∑

λx.H ∈ supp(λx.E)

(λx.E)(λx.H) ·FH,N

= D .

(c) If M = P1 ⊕ P2 then it must be that M 99K 1
2
M1 = P1 and M 99K 1

2
M2 = P2, with

M1 ⇓ D1 and M2 ⇓ D2. In this case, it suffices to define D , 1
2 ·D1 + 1

2 ·D2.

• Suppose E = λx.E ′ and let us consider the case P 99K 1
2
P1 and P 99K 1

2
P2. Then, for

i ∈ {1, 2}, the last rule in the derivation of E [Pi] ⇓ Di is as follows:

E ′[Pi] ⇓ D ′i
s3

λx.E ′[Pi] ⇓ λx.D ′i

By applying the induction hypothesis, there exists D ′ such that E ′[P] ⇓ D ′ and 1
2 ·D

′
1 + 1

2 ·
D ′2 ≤ D ′. We define D , λx.D ′. Then, we have both λx.E ′[P] ⇓ D and 1

2 ·D1 + 1
2 ·D2 ≤ D .

• Suppose E = E ′L and let us consider the case P 99K 1
2
P1 and P 99K 1

2
P2. Then, for

i ∈ {1, 2}, the last rule of the derivation of E [Pi] ⇓ Di is as follows:

E ′[Pi] ⇓ Ei {H ′[L/x] ⇓ F i
H,L}λx.H′ ∈ supp(Ei)

s4
E ′[Pi]L ⇓

∑
λx.H′ ∈ supp(Ei)

Ei(λx.H ′) ·F i
H′,L +

∑
H′ ∈ supp(Ei)∩NEUT Ei(H ′) ·H ′L

The proof is similar to point (b).

Lemma 114. Let M ∈ Λ⊕. For all H ∈ HNF, S∞(M,H) ≤ JMK(H).

Proof. We prove by induction on n ∈ N that there exists D such that M ⇓ D and, ∀H ∈ HNF,
Sn(M,H) ≤ D(H). The case n = 0 is trivial, so let n > 0. If M is a head normal form, then
Sn(M,H) = 0 and we take D , ⊥. Otherwise, we have two cases:

• IfM 99K1 M ′ then Sn(M,H) = Sn−1(M ′, H), by Lemma 109.(1). By induction hypothesis
there exists D such thatM ′ ⇓ D and Sn−1(M ′, H) ≤ D(H), for all H ∈ HNF. By applying
Lemma 113.(1), M ⇓ D .

• If M 99K 1
2
M ′ and M 99K 1

2
M ′′ then, by Lemma 109.(1), we have Sn(M,H) = 1

2 ·
Sn−1(M ′, H)+ 1

2 ·S
n−1(M ′′, H). By induction hypothesis there exist D ′ and D ′′ such that

M ′ ⇓ D ′,M ′′ ⇓ D ′′, Sn−1(M ′, H) ≤ D ′(H), and Sn−1(M ′′, H) ≤ D ′′(H), for allH ∈ HNF.
By applying Lemma 113.(2), there exists D such that M ⇓ D and 1

2 ·D
′+ 1

2 ·D
′′ ≤ D .

We are now able to prove that H∞, S∞ and J·K are all equivalent operational semantics:

Theorem 115 (Equivalence). Let M ∈ Λ⊕. For all H ∈ HNF, H∞(M,H) = S∞(M,H) =
JMK(H).

Proof. Let H ∈ HNF. By Theorem 111, we have H∞(M,H) = S∞(M,H). By Lemma 112 and
Lemma 114, we have S∞(M,H) = JMK(H).

As expected, Proposition 97.(2) says that the operational semantics J·K in Definition 71 is
invariant under the head spine reduction step that rewrites (λx.H)N into H[N/x], where H ∈
HNF. A consequence of Theorem 115 is that J·K is also invariant under the usual head reduction
step rewriting (λx.M)N into M [N/x], where M is not necessarily a head normal form:

138

Corollary 116. Let M,N ∈ Λ⊕. Then J(λx.M)NK = JM [N/x]K.

Proof. From Lemma 109.(1), we have Hn((λx.M)N,H) = Hn−1(M [N/x], H), for all n ∈ N
and H ∈ HNF. This means that H∞((λx.M)N,H) = H∞(M [N/x], H). We conclude by
Theorem 115.

5.3 Soundess
A fundamental technique to establish the soundness of applicative (bi)similarity is the so-called
Howe’s method [52]. This method shows that applicative bisimilarity is a congruence, i.e. an
equivalence relation that respects the structure of terms, which is the hard part in the soundness
proof. This technique has been used in e.g. [27, 22] for, respectively, the lazy cbn and cbv
semantics of Λ⊕. We consider here a different approach. Following the reasoning by Abramsky
and Ong [2], we shall first prove that - is included in ≤app (Lemma 125), which requires a
technical Key Lemma (Lemma 124) specific to the probabilistic framework, and then we conclude
by applying a Context Lemma (Lemma 119).

The Context Lemma says that the computational behaviour of the context semantics is func-
tional. This property has also been called operational extensionality in Bloom [16]. Milner [71]
proved a similar result in the case of simply typed combinatory algebra. To the best of our
knowledge, the Context Lemma lacks a corresponding formulation in the probabilistic λ-calculus
Λ⊕, so we prove it in the following subsection.

5.3.1 The Context Lemma
Context equivalence captures the intuitive idea that two programs are indistinguishable in all
possible programming contexts. As already stressed, though context preorder and equivalence
are clearly important, it is hard to reason about them directly. The Context Lemma states that
only the subset of applicative contexts “really matter”.

Definition 81 (Applicative contexts). An applicative context is a context C ∈ CΛ⊕ of the form
(λx1 . . . xn.[·])P1 . . . Pm, where n,m ∈ N and P1 . . . Pm ∈ Λ∅⊕. We denote by AΛ⊕ the set of all
applicative contexts. For every M,N ∈ Λ⊕:

(1) Applicative context preorder : M ≤app N if and only if
∑

JC[M]K ≤
∑

JC[N]K, for all
C ∈ AΛ⊕;

(2) Applicative context equivalence: M =app N if and only if
∑

JC[M]K =
∑

JC[N]K, for all
C ∈ AΛ⊕.

Notice that M =app N if and only if M ≤app N and N ≤app M .

Lemma 117. Let M,N ∈ Λ
Γ∪{x}
⊕ :

(1) if M ≤app N then λx.M ≤app λx.N ;

(2) if λx.M ≤cxt λx.N then M ≤cxt N ;

(3) if M ≤cxt N then, for all L ∈ Λ⊕, ML ≤cxt NL.

Proof. Concerning point (1), let us suppose that λx.M ≤app λx.N does not hold. Then, there
exists an applicative context C = (λx1 . . . xn.[·])P1 . . . Pm such that

∑
JC[λx.N]K <

∑
JC[λx.M]K.

We consider the applicative context C′ , C[λx.[·]]. Then, we have
∑

JC′[N]K =
∑

JC[λx.N]K <∑
JC[λx.M]K =

∑
JC′[M]K. Therefore, M ≤app N does not hold.

139

Let us now prove point (2). Suppose that M ≤cxt N does not hold. Then, there exists
C ∈ CΛ⊕ such that

∑
JC[N]K <

∑
JC[M]K. We consider the context C′ , C[[·]x]. By applying

Corollary 116 twice and Lemma 99.(2), we can conclude
∑

JC′[λx.N]K =
∑

JC[(λx.N)x]K =∑
JC[N]K <

∑
JC[M]K =

∑
JC[(λx.M)x]K =

∑
JC′[λx.M]K. Hence, λx.M ≤cxt λx.N does not

hold.
Last, we prove point (3). Suppose M ≤cxt N and let C ∈ CΛ⊕. By defining C′ , C[[·]L] we

have
∑

JC[ML]K =
∑

JC′[M]K ≤
∑

JC′[N]K =
∑

JC[NL]K. Therefore, ML ≤cxt NL.

In order to simplify the proof of Context Lemma, we shall adopt a slightly more general
notion of context, allowing multiple holes.

Definition 82 (Generalized contexts). Let V be a denumerable set of variables. A generalized
context of Λ⊕ is a term containing holes [·], generated by the following grammar:

C := x | [·] | λx.C | CC | C ⊕ C (5.5)

where x ∈ V. We denote by GΛ⊕ the set of all generalized contexts. If C ∈ GΛ⊕ and M ∈ Λ⊕,
then C[M] denotes a term obtained by substituting every hole in C with M allowing the possible
capture of free variables of M .

Context lemma says that if two programs are distinguishable by some context then there is
some applicative context that distinguish them.

Lemma 118. Let M,N ∈ Λ∅⊕ be such that M ≤app N . Then
∑

JC[M]K ≤
∑

JC[N]K, for all
C ∈ GΛ⊕.

Proof. By Theorem 115, it is enough to show that, for all n ∈ N and for all contexts C ∈ GΛ⊕:∑
H∈HNF

Hn(C[M], H) ≤
∑

H∈HNF

H∞(C[N], H). (5.6)

In what follows, we write
∑
Hn(C[M]) (resp.

∑
H∞(C[M])) in place of

∑
H∈HNFHn(C[M], H)

(resp.
∑
H∈HNFH∞(C[M], H)). The proof is by induction on (n, |C|), where n ∈ N and |C| is the

size of C ∈ GΛ⊕, i.e. the number of nodes in the syntax tree of C. First, note that C must be of
the form C0C1 . . . Ck, for some k ∈ N. We have several cases depending on the structure of C0:

(a) C0 = x then both C[M] and C[N] are head normal forms, and the inequation in (5.6) is
straightforward.

(b) If C0 = λx.C′ then we have two cases:

(i) If k = 0 then, by Lemma 109.(2) and by induction hypothesis,
∑
Hn(λx.C′[M]) =∑

Hn(C′[M]) ≤
∑
H∞(C′[N]) =

∑
H∞(λx.C′[N]).

(ii) For k > 0 we have two cases depending on n ∈ N. If n = 0 then Lemma 109.(1)
implies

∑
H0((λx.C′[M])C1[M] . . . Ck[M]) = 0. Otherwise, by Lemma 109.(1) and by

using the induction hypothesis, we have:∑
Hn((λx.C′[M])C1[M] . . . Ck[M]) =

∑
Hn−1(((C′[M])[C1[M]/x])C2[M] . . . Ck[M])

≤
∑
H∞(((C′[N])[C1[N]/x])C2[N] . . . Ck[N])

=
∑
H∞((λx.C′[N])C1[N] . . . Ck[N]).

140

(c) If C0 = C′ ⊕ C′′, then we have two cases depending on n ∈ N. If n = 0, Lemma 109.(1)
implies

∑
Hn((C′[M] ⊕ C′′[M])C1[M] . . . Ck[M]) = 0. Otherwise, by using the induction

hypothesis and by Lemma 109.(1), we have:∑
Hn((C′[M]⊕ C′′[M])C1[M] . . . Ck[M]) =

1

2
·
∑
Hn−1(C′[M]C1[M] . . . Ck[M])

+
1

2
·
∑
Hn−1(C′′[M]C1[M] . . . Ck[M])

≤ 1

2
·
∑
H∞(C′[N]C1[N] . . . Ck[N])

+
1

2
·
∑
H∞(C′′[N]C1[N] . . . Ck[N])

=
∑
H∞((C′[N]⊕ C′′[N])C1[N] . . . Ck[N]).

(d) The last case is when C0 = [·]. First, note that M = M0 . . .Mh for some h ∈ N. Since M
is closed, we can assume that M0 = λx.M ′0 is an abstraction. We apply Case (b) to the
context (λx.M ′0)M1 . . .MhC1 . . . Ck, and we have

∑
Hn(M0M1 . . .MhC1[M] . . . Ck[M]) ≤∑

H∞(M0M1 . . .MhC1[N] . . . Ck[N]). Since it holds that M ≤app N , we can conclude∑
H∞(MC1[N] . . . Ck[N]) ≤

∑
H∞(NC1[N] . . . Ck[N]).

Lemma 119 (Context Lemma). Let M,N ∈ Λ⊕:

(1) M ≤cxt N if and only if M ≤app N ;

(2) M =cxt N if and only if M =app N .

Proof. Point (2) follows directly from point (1). Lemma 118 gives us point (1) for M,N ∈ Λ∅⊕.
We extend it to open terms as follows. If M,N ∈ Λ

{x1,...,xn}
⊕ , then:

M ≤app N ⇒ λx1 . . . xn.M ≤app λx1 . . . xn.N Lem. 117.(1)

⇒ λx1 . . . xn.M ≤cxt λx1 . . . xn.N

⇒M ≤cxt N. Lem. 117.(2)

This concludes the proof.

5.3.2 The Soundness Theorem

Let us recall that, given X ⊆ HNF, -(X) denotes the image of X under -. We start with some
preliminary lemmas.

Lemma 120. Let H,H ′ ∈ HNF{x}. The following are equivalent statements:

(1) λx.H - λx.H ′;

(2) νx.H - νx.H ′;

(3) ∀P ∈ Λ∅⊕, H[P/x] - H ′[P/x].

Proof. Let us first show that point (1) implies point (2). By Proposition 104, if λx.H - λx.H ′

then:
1 = P⊕(λx.H, τ, {νx.H}) ≤ P⊕(λx.H ′, τ,-(νx.H)).

141

Hence, P⊕(λx.H ′, τ,-(νx.H)) = 1, so that νx.H - νx.H ′. To prove that point (2) implies
point (3), if νx.H - νx.H ′ then, by Proposition 104, we have:

1 = P⊕(νx.H, P, {H[P/x]}) ≤ P⊕(νx.H ′, P,-(H[P/x])),

for all P ∈ Λ∅⊕. Hence, P⊕(νx.H ′, P,-(H[P/x])) = 1, so that H[P/x] - H ′[P/x]. We now prove
that point (3) implies point (2). Let us consider the relation R defined by:

{(νx.H, νx.H ′) ∈ H̃NF× H̃NF | ∀P ∈ Λ∅⊕, H[P/x] - H ′[P/x]} ∪-

Clearly, R is a preorder because - is. Now, if we show that R is a simulation then R ⊆ -, so
that νx.H - νx.H ′ holds whenever H[P/x] - H ′[P/x] for all P ∈ Λ∅⊕. The only interesting case
is νx.H R νx.H ′. Let P ∈ Λ∅⊕. By definition, we have H[P/x] - H ′[P/x], so that:

P⊕(νx.H, P, {H[P/x]}) ≤ P⊕(νx.H ′, P,-({H[P/x]}))
≤ P⊕(νx.H ′, P,R({H[P/x]})).

Finally, we prove that point (2) implies point (1). Let us consider the following relation:

R , {(λx.H, λx.H ′) ∈ HNF×HNF | νx.H - νx.H ′} ∪-.

It is a preorder because - is. Now, if we show that R is a simulation then R ⊆ -, so that
λx.H - λx.H ′ whenever νx.H - νx.H ′. The only interesting case is λx.H R λx.H ′. By
definition, we have νx.H - νx.H ′, so that P⊕(λx.H, τ, {νx.H}) ≤ P⊕(λx.H ′, τ,-({νx.H})) ≤
P⊕(λx.H ′, τ,R({νx.H})).

Given X ⊆ HNF{x}, νx.-(X) denotes the set of distinguished hnfs {νx.H | H ∈ -(X)},
while λx.-(X) denotes the set of terms {λx.M | M ∈ -(X)}.

Lemma 121. Let X ⊆ HNF{x}:

-(λx.X) ∩HNF∅ = λx.-(X) ∩HNF∅,

-(νx.X) = νx.-(X).

Proof. Let us prove the first equation. For all λx.H ∈ HNF∅:

λx.H ∈ -(λx.X)⇔ ∃H ′ ∈ X, λx.H ′ - λx.H
⇔ ∃H ′ ∈ X, H ′ - H Def. 79

⇔ λx.H ∈ λx.-(X).

Concerning the second equation, first note that -(νx.X) contains only distinguished head normal
forms. Indeed, suppose M ∈ -(νx.X) for some term M ∈ Λ∅⊕. Then, there exists H ∈ X
such that νx.H - M . By Proposition 104, we would have 1 = P⊕(νx.H, P, {H[P/x]}) ≤
P⊕(M,P,-({H[P/x]})) = 0. Now, for all νx.H ∈ H̃NF, we have:

νx.H ∈ -(νx.X)⇔ ∃H ′ ∈ X, νx.H ′ - νx.H
⇔ ∃H ′ ∈ X, λx.H ′ - λx.H Lem. 120

⇔ ∃H ′ ∈ X, H ′ - H Def. 79

⇔ νx.H ∈ νx.-(X).

This concludes the proof.

142

Lemma 122. Let M,N ∈ Λ∅⊕. For all X ⊆ HNF∅, JMK(X) ≤ JNK(-(X)) if and only if
M - N .

Proof. The right-to-left direction follows from Proposition 104. Concerning the converse, we
define R as:

{(P,Q) ∈ Λ∅⊕ × Λ∅⊕ | ∀X ⊆ HNF∅, JP K(X) ≤ JQK(-(X))} ∪-

If we prove that R is a probabilistic simulation then R ⊆ -, so thatM - N whenever JMK(X) ≤
JNK(-(X)), for all X ⊆ HNF∅. So, let us first prove that R is a preorder. Clearly, R is reflexive.
To prove transitivity, let P,Q,L ∈ Λ∅⊕ be such that P R L and L R Q. By Proposition 104, -
is transitive. It follows that, for all X ⊆ HNF∅:

JP K(X) ≤ JLK(-(X)) ≤ JQK(-(-(X))) ≤ JQK(-(X))

Now, let P,Q ∈ Λ∅⊕ be such that P R Q, and let X ⊆ HNF{x}. We have:

P⊕(P, τ, νx.X) = JP K(λx.X)

≤ JQK(-(λx.X))

= JQK(-(λx.X) ∩HNF∅) since Q ∈ Λ∅⊕

= JQK(λx.-(X) ∩HNF∅) Lem. 121

= JQK(λx.-(X)) Q ∈ Λ∅⊕

= P⊕(Q, τ, νx.-(X))

= P⊕(Q, τ,-(νx.X)) Lem. 121

≤ P⊕(Q, τ,R(νx.X)).

Therefore, R is a probabilistic simulation.

The forthcoming Lemma 124 describes the applicative behaviour of - and it requires an
auxiliary result about the so-called “probabilistic assignments”. Probabilistic assignments were
first introduced in this setting by [27] to prove the soundness of PAS in the lazy cbn.

Definition 83 (Probabilistic assignments). A probabilistic assignment is defined as a pair
({pi}1≤i≤n, {rI}I⊆{1,...,n}), with all pi, rI in [0, 1], such that, for all I ⊆ {1, . . . , n}:∑

i∈I
pi ≤

∑
J⊆{1,...,n}
s.t. J∩I 6=∅

rJ . (5.7)

Lemma 123 ([27]). Let ({pi}1≤i≤n, {rI}I⊆{1,...,n}) be a probabilistic assignment. Then for every
I ⊆ {1, . . . , n} and for every k ∈ I there is sk,I ∈ [0, 1] such that:

(1) ∀j ∈ {1, . . . , n}: pj ≤
∑

J⊆{1,...,n}
s.t. j∈J

sj,J · rJ ;

(2) ∀J ⊆ {1, . . . , n}:
∑

j∈{1,...,n}
s.t. j∈J

sj,J ≤ 1.

Following essentially the same ideas of [27], we shall use the above property to decompose
and recombine distributions in the proof of the following lemma.

Lemma 124 (Key Lemma). Let M,N ∈ Λ∅⊕. If M - N then, for all P ∈ Λ∅⊕, MP - NP .

143

Proof. By Lemma 122 it suffices to prove that, for all X ⊆ HNF∅, JMP K(X) ≤ JNP K(-(X)).
This amounts to show that, for all D such that MP ⇓ D , it holds that D(X) ≤ JNP K(-(X)).
This is trivial when D = ⊥, so that we can assume that the last rule in the derivation ofMP ⇓ D
is the following:

M ⇓ E {H[P/x] ⇓ FH,P }λx.H∈ supp(E)
s4

MP ⇓
∑
λx.H ∈ supp(E) E (λx.H) ·FH,P

Since E is a finite distribution, D is a sum of finitely many summands. Let supp(E) be
{λz.H1, . . . , λz.Hn} ⊆ HNF∅. We define the pair ({pi}1≤i≤n, {rI}I⊆{1,...,n}) as follows:

(a) ∀i ≤ n: pi , E (λz.Hi);

(b) ∀I ⊆ {1, . . . , n}:
rI ,

∑
λz.H′ s.t.

{i≤n | λz.H′∈-(λz.Hi)}=I

JNK(λz.H ′).

Let us show that ({pi}1≤i≤n, {rI}I⊆{1,...,n}) is a probabilistic assignment by proving that the
condition in (5.7) holds. First, from M - N and by Lemma 122, we have E (

⋃
i∈I{λz.Hi}) ≤

JNK(
⋃
i∈I -(λz.Hi)). Moreover, JNK(

⋃
i∈I -(λz.Hi)) = JNK(

⋃
i∈I -(λz.Hi) ∩ HNF∅) because

N ∈ Λ∅⊕. Finally, for all I ⊆ {1, . . . , n}:∑
i∈I

pi =
∑
i∈I

E (λz.Hi) = E (
⋃
i∈I
{λz.Hi}) ≤ JNK(

⋃
i∈I
-(λz.Hi)) = JNK(

⋃
i∈I
-(λz.Hi) ∩ HNF∅)

=
∑

λz.H′∈⋃
i∈I -(λz.Hi)

JNK(λz.H ′) ≤
∑

J⊆{1,...,n}
s.t. J∩I 6=∅

rJ .

By applying Lemma 123, for all I = {1, . . . , n} and for every k ∈ I there exists hk,I ∈ [0, 1] such
that:

∀j ≤ n : pj ≤
∑

J⊆{1,...,n}
s.t. j∈J

hj,J · rJ ; (5.8)

∀J ⊆ {1, . . . , n} : 1 ≥
∑

j∈{1,...,n}
s.t. j∈J

hj,J . (5.9)

We now show that, for all λz.H ′ ∈
⋃
i∈I -(λz.Hi), there exist n real numbers sH

′

1 , . . . , sH
′

n such
that:

∀i ≤ n : E (λz.Hi) ≤
∑

λz.H′∈-(λz.Hi)

sH
′

i ; (5.10)

∀λz.H ′ ∈
⋃
i∈I
-(λz.Hi) : JNK(λz.H ′) ≥

n∑
i=1

sH
′

i . (5.11)

For all i ≤ n and for all λz.H ′ ∈ -(λz.Hi), we set:

sH
′

i , hi,{k≤n | λz.H′∈-(λz.Hk)} · JNK(λz.H ′).

144

Concerning the inequation in (5.10), by using the inequation in (5.8) we have, for all i ≤ n:

E (λz.Hi) ≤
∑

I⊆{1,...n}
s.t. i∈I

hi,I · rI

=
∑

I⊆{1,...n}
s.t. i∈I

hi,I ·

(∑
λz.H′ s.t.

{k≤n | λz.H′∈-(λz.Hk)}=I

JNK(λz.H ′)

)

=
∑

λz.H′∈-(λz.Hi)

hi,{k≤n | λz.H′∈-(λz.Hk)} · JNK(λz.H ′) =
∑

λz.H′∈-(λz.Hi)

sH
′

i

As for the inequation in (5.11), by using the inequation in (5.9) we have, for all λz.H ′ ∈⋃
i∈I -(λz.Hi):

n∑
i=1

sH
′

i =

n∑
i=1

hi,{k≤n | λz.H′∈-(λz.Hk)} · JNK(λz.H ′) ≤ JNK(λz.H ′)

We are now able to prove that D(X) ≤ JNP K(-(X)). First, by applying Lemma 120 and
Lemma 122, for all i ≤ n, for all λz.H ′ ∈ -(λz.Hi), for all P ∈ Λ∅⊕, and for all X ⊆ HNF∅:

FHi,P (X) ≤ JHi[P/x]K(X) ≤ JH ′[P/x]K(-(X)) (5.12)

Therefore, for all X ⊆ HNF∅:

D(X) ≤
n∑
i=1

(∑
λz.H′∈-(λz.Hi)

sH
′

i

)
·FHi,P (X) = by (5.10)

=

n∑
i=1

∑
λz.H′∈-(λz.Hi)

sH
′

i ·FHi,P (X)

≤
n∑
i=1

∑
λz.H′∈-(λz.Hi)

sH
′

i · JH ′[P/z]K(-(X)) by (5.12)

≤
n∑
i=1

∑
λz.H′∈⋃n

i=1 -(λz.Hi)

sH
′

i · JH ′[P/z]K(-(X))

≤
∑

λz.H′∈⋃n
i=1 -(λz.Hi)

(n∑
i=1

sH
′

i

)
· JH ′[P/z]K(-(X))

≤
∑

λz.H′∈⋃n
i=1 -(λz.Hi)

JNK(λz.H ′) · JH ′[P/z]K(-(X)) by (5.11)

≤
∑

λz.H′∈ supp(JNK)

JNK(λz.H ′) · JH ′[P/z]K(-(X)) = JNP K(-(X)) Prop. 97.(1)

and hence D(X) ≤ JNP K(-(X)).

Lemma 125. Let M,N ∈ Λ∅⊕. If M - N then M ≤app N .

145

Proof. We have to show thatM - N implies
∑

JMP1 . . . PnK ≤
∑

JNP1 . . . PnK, for any sequence
P1, . . . , Pn ∈ Λ∅⊕. The proof is by induction on n. If n = 0 then, fromM - N and by Lemma 122,
we have: ∑

JMK = JMK(HNF∅) ≤ JNK(-(HNF∅)) = JNK(HNF∅) =
∑

JNK.

If n > 0 then MP1 - NP1 by Lemma 124. We conclude by applying the induction hypothesis
on MP1 and NP1.

We are now able to prove that PAS (resp. PAB) is sound with respect to context preorder
(resp. context equivalence), a first step toward full abstraction.

Theorem 126 (Soundness). Let M,N ∈ Λ⊕:

(1) M - N implies M ≤cxt N ;

(2) M ∼ N implies M =cxt N .

Proof. Point (2) follows from point (1) since ∼ = - ∩ (-)op (Proposition 107) and since =cxt

is ≤cxt ∩ (≤cxt)
op. Concerning point (1), we first prove it for closed terms. So, let M,N ∈ Λ∅⊕

be such that M - N . By Lemma 125, it holds that M ≤app N . By Lemma 119, this implies
M ≤cxt N . Now, let M,N ∈ Λ

{x1,...,xn}
⊕ be such that M - N . From Definition 79, we have

that λx1 . . . xn.M - λx1 . . . xn.N . Because these are closed terms, we obtain λx1 . . . xn.M ≤cxt

λx1 . . . xn.N . By repeatedly applying Lemma 117.(2), we conclude M ≤cxt N .

5.4 Full abstraction
In this section we prove that PAB is complete, and hence fully abstract for the head reduction
(Theorem 134). Moreover, by using the Context Lemma, we give a counterexample to the
completeness for PAS (see (5.16)) and we discuss how this property could be restored by adding
Plotkin’s “parallel disjunction” [76] to Λ⊕, as done in [23]. We motivate our conjecture by showing
that the counterexample no longer applies in the extended language, if endowed with a suitable
operational semantics respecting some invariance properties.

Concerning the proof of the completeness for PAB, this is usually achieved by transforming
PAB into a testing semantics defined by Larsen and Skou [58], which has been proved equivalent
to probabilistic bisimulation by van Breugel et al. [92], and then by showing that every test
is definable by a context in the language, see e.g. [22, 53]. This reasoning is not so simple to
implement in our setting, since defining tests requires a kind of sampling primitive, that may or
may not be representable in a call-by-name semantics, as already remarked in the introduction
of this chapter.

Nonetheless, we succeed in following a different path, based on Leventis’ Separation Theorem
[60]. The idea is to prove that (a trivial extension of) the context equivalence is a probabilistic
applicative bisimulation, hence contained in ∼ by Definition 76.(2). Basically, this boils down to
checking that for any context equivalence class E of head normal forms and any M =cxt N , we
have JMK(E) = JNK(E) (Lemma 133). To prove this, we shall associate with every term a kind
of infinitary, extensional normal forms, the so-called probabilistic Nakajima trees (Section 5.4.1).
Using the Separation Theorem, stating that two terms M and N share the same Nakajima tree
whenever they are context equivalent (here Theorem 129), we shall look at such trees as the
representatives of the context equivalence classes. The missing ingredient will be then to show
that the quantity JMK(E) depends only on the Nakajima tree of M and that of E (Lemma 132),
and this allows us conclude JMK(E) = JNK(E) and hence the full abstraction result.

146

5.4.1 Probabilistic Nakajima trees
A Böhm tree [10] is a labelled tree describing a kind of infinitary normal form of any deterministic
λ-term. In more details, the Böhm tree BT (M) of a λ-term M can be given co-inductively as
follows:

• if the head reduction of M terminates into the head normal form λx1 . . . xn.yM1 . . .Mm,
then:

λx1 . . . xn.y
BT (M) ,

BT (M1) BT (Mm)

. . .

where BT (M1), . . . , BT (Mm) are the Böhm trees of the subtermsM1, . . . ,Mm of the head
normal form of M ;

• otherwise, the tree is a node labelled by Ω.

The notion of Böhm tree is not sufficient to characterize context equivalence because it lacks
extensionality: the terms y and λz.yz have different Böhm trees and yet y =cxt λz.yz holds.
To recover extensionality, we need the so-called Nakajima trees [74], which are infinitely η-
expanded representations of the Böhm trees. The Nakajima tree BT η(H) of a head normal form
H = λx1 . . . xn.yM1 . . .Mm is the infinitely branching tree:

λx1 . . . xnxn+1y

BT η(M1) BT η(xn+1)BT η(Mm)

.BT η(H) ,

where x1 . . . xnxn+1 . . . is an infinite sequence of pairwise distinct variables and, for i > n, the
xi’s are fresh.

Nakajima trees represent infinitary η-long head normal forms. Every head normal form
H = λx1 . . . xn.yM1 . . .Mm η-expands into λx1 . . . xn+k.yM1 . . .Mmxn+1 . . . xn+k for any k ∈ N
and xn+1 . . . xn+k fresh: Nakajima trees are, intuitively, the asymptotical representations of these
η-expansions.

To generalize such a construction to probabilistic terms, we define by mutual recursion the
tree associated with a head normal form and the tree of an arbitrary term M , the latter being a
subprobability distribution over the trees of the head normal formsM reduces to. Hence, strictly
speaking, a probabilistic Nakajima tree is not properly a tree.

Following Leventis [60] we shall give an inductive, “level-by-level” definition of the probabilistic
Nakajima trees.

Definition 84 (Probabilistic Nakajima trees). The set PT η` of probabilistic Nakajima trees with
level at most ` ∈ N is the set of subprobability distributions over value Nakajima trees VT η` .
These sets are defined by mutual recursion as follows:

VT η0 , ∅ VT η`+1 , {λx1x2y T1, T2, . . . | Ti ∈ PT η` , ∀i ≥ 1}

PT η0 , {⊥} PT η`+1 , {T : VT η`+1 → [0, 1] |
∑

t∈VT η`+1

T (t) ≤ 1}

where ⊥ represents the distribution with empty support.

147

⊕

λx1x2y

⊥ ⊥

1

. . .

⊕

λx1x2y

⊕

λz1, z2x1

⊥ ⊥

⊕

λz1, z2x2

⊥ ⊥

λx1x2y

⊕

λz1, z2y

⊥ ⊥

⊕

λz1, z2x1

⊥ ⊥

1
2

1

. . .

. . .

1

. . .

1
2

. . .

1

. . .

1

. . .

Figure 5.4: From left, the Nakajima trees PT η1 (Θ(λf.(y ⊕ yf))) and PT η2 (Θ(λf.(y ⊕ yf))).

Value Nakajima trees are ranged over by t, and probabilistic Nakajima trees are ranged over
by T .

Definition 85 (Probabilistic Nakajima tree equality). Let ` ∈ N. By mutual recursion we define
a function V T η`+1 associating with each H ∈ HNF its value Nakajima tree V T η`+1(H) of level
`+1, and a function PT η` association with eachM ∈ Λ⊕ its probabilistic Nakajima tree PT η` (M)
of level `:

• if H = λx1 . . . xn.yM1 . . .Mm, then V T η`+1(H) is:
λx1 . . . xnxn+1y

PT η` (M1) PT η` (xn+1)PT η` (Mm)

.

where x1 . . . xnxn+1 . . . is an infinite sequence of pairwise distinct variables and, for i > n,
the xi’s are fresh;

• PT η` (M) ,

{
t 7→

∑
H∈(V Tη`)−1(t)JMK(H) if ` > 0,

⊥ otherwise.

We say that M and N have the same Nakajima tree, and we write M =PTη N , if PT η` (M) =
PT η` (N) holds for all ` ∈ N.

Theorem 115 assures that the above definition based on the operational semantics J·K given
in Definition 71 is equivalent to the one given by Leventis in [60], based on the head reduction.

Example 31. Figure 5.4 depicts the Nakajima trees of level, respectively, 1 and 2 associated with
term Θ(λf.(y⊕yf)), where Θ is the Turing fixed-point combinator (Example 22). Distributions
are represented by barycentric sums, depicted as ⊕ nodes whose outgoing edges are weighted by
probabilities. Notice that the more the level ` increases, the more the top-level distribution’s
support grows.

Proposition 127 ([60]). Let M,N ∈ Λ⊕. If PT η` (M) = PT η` (N) for some ` ∈ N, then
PT η`′(M) = PT η`′(N) for all `′ ≤ `.

148

Proof. It suffices to prove by induction on ` ∈ N that PT η` (M) 6= PT η` (N) implies PT η`+1(M) 6=
PT η`+1(N).

The next lemma shows that we can recover some informations about the shape of two terms
from their Nakajima tree equivalence.

Lemma 128 ([61]). Let H = λx1 . . . xn.yM1 . . .Mm and H ′ = λx1 . . . xn′ .y
′M ′1 . . .M

′
m′ be two

head normal forms, and let ` ≥ 2. Then V T η` (H) = V T η` (H ′) implies both y = y′ and n−m =
n′ −m′.

Proof. The fact y = y′ follows immediately from the definition of V T η` . Concerning the second
equality, one can assume n = n′ by expanding one of the two terms, since n−m (resp. n′ −m′)
is invariant under η-expansion. Modulo α-equivalence, we can then restrict ourselves to consider
the case of H = λx1 . . . xn.yM1 . . .Mm and H ′ = λx1 . . . xn.yM

′
1 . . .M

′
m′ .

Suppose for the sake of contradiction, that m > m′. Then we should have PT η`−1(Mm′+1) =
PT η`−1(xn+1), were xn+1 is a fresh variable. In particular, it must be that xn+1 6∈ FV (Mm′+1).
Since `− 1 > 0, we have that PT η`−1(xn+1)(t) = 1 only if t is equal to:

λz1z2xn+1

PT η`−2(z1) PT η`−2(z2)

. . .

otherwise PT η`−1(xn+1)(t) = 0. So, PT η`−1(Mm′+1) = PT η`−1(xn+1) implies that JMm′+1K(H) > 0
for some H having xn+1 as free variable, which is impossible since xn+1 6∈ FV (Mm′+1).

Theorem 129 (Separation [60]). Let M,N ∈ Λ⊕. If M =cxt N then M =PTη N .

5.4.2 The Completeness Theorem
In the previous subsection probabilistic Nakajima trees have been inductively presented by intro-
ducing “level-by-level” their finite representations. To recover the full quantitative information of
a Nakajima tree we shall need a notion of approximation together with some general properties.

Definition 86 (ε-approximations). Let r, r′ ∈ R and ε > 0. We say that r ε-approximates r′,
and we write r ≈ε r′, if |r − r′| < ε.

Fact 130. Let r, r′, r′′ ∈ R and ε, ε′ > 0. If r ≈ε r′ and r′ ≈ε′ r′′ then r ≈ε+ε′ r′′.

Proof. We have |r − r′′| = |r − r′ + r′ − r′′| ≤ |r − r′|+ |r′ − r′′| < ε+ ε′.

Lemma 131. Let {An}n∈N be a descending chain of countable sets of positive real numbers
satisfying

∑
r∈An r <∞, for all n ∈ N. Then:

∑
r∈

⋂
n∈N An

r = inf
n∈N

(∑
r∈An

r

)
. (5.13)

Proof. Henceforth, if A is a subset of real numbers, we let ‖A‖ denote
∑
r∈A r. First, notice that

it suffices to prove the following particular situation:

if
⋂
n∈N

An = ∅ then inf
m∈N
‖Am‖ = 0. (5.14)

149

Let us show that the implication in (5.14) gives us the equation in (5.13). So, consider the chain
{Bn}n∈N defined by Bn , An \

⋂
m∈NAm. Since

⋂
n∈NBn = ∅, then infm∈N ‖Bm‖ = 0 by (5.14).

We have:

‖
⋂
n∈N

An‖ = ‖
⋂
n∈N

An‖+ inf
m∈N
‖Bm‖

= inf
m∈N

(‖
⋂
n∈N

An‖+ ‖Bm‖)

= inf
m∈N

(‖
⋂
n∈N

An ∪Bm‖)

= inf
m∈N
‖Am‖.

So, let us prove (5.14) and suppose
⋂
n∈NAn = ∅. Since {An}n∈N is a descending chain such

that ∀n ∈ N ‖An‖ < ∞, we have that ‖An‖n∈N is a monotone decreasing sequence of positive
real numbers. This means that limn→∞ ‖An‖ = infn∈N ‖An‖. Thus, to prove the statement,
it suffices to show that for all ε > 0 there exists k ∈ N such that for all m ≥ k it holds that
‖Am‖ < ε. Now, given a An and ε > 0, there always exists a finite subset of An, let us call it
A∗n, such that ‖A∗n‖ ≈ε ‖An‖. Moreover, since

⋂
n∈NAn = ∅, for all r ∈ A∗n there exists a nr ∈ N

such that r 6∈ Anr . By considering Ak such that k , maxr∈A∗n nr we have Ak ⊆ An \A∗n. Hence,
‖Ak‖ ≤ ‖An \A∗n‖ = ‖An‖ − ‖A∗n‖ < ε.

A consequence of Theorem 129 is that for every context equivalence class E ∈ Λ∅⊕/ =cxt

and for every level ` ∈ N there exists a unique value Nakajima tree t of that level such that
V T η` (H) = t for all H ∈ E. Let tE,` denote such a tree.

Lemma 132. Let M ∈ Λ∅⊕ and E ∈ Λ∅⊕/ =cxt. Then:

(1) JMK(E) = inf`∈N (PT η` (M)(tE,`)),

(2) ∀ε > 0 ∃` ∈ N ∀`′ ≥ `: JMK(E) ≈ε PT η`′(M)(tE,`′).

Proof. Let EV , E ∩HNF∅, notice that JMK(E) = JMK(EV). As for point (1), we have H ∈ EV

if and only if ∀` ∈ N V T η` (H) = tE,` if and only if ∀` ∈ N H ∈ (V T η`)−1(tE,`), so that
EV =

⋂
`∈N(V T η`)−1(tE,`). Moreover, by Proposition 127, for all ` ∈ N it holds that:

(V T η`+1)−1(tE,`+1) = {H ∈ HNF∅ | V T η`+1(H) = tE,`+1}

⊆ {H ∈ HNF∅ | V T η` (H) = tE,`}
= (V T η`)−1(tE,`).

(5.15)

Therefore, ((V T η`)−1(tE,`))`∈N is a descending chain, so that {JMK(H) | H ∈ (V T η`)−1(tE,`)}`∈N
is. Moreover, by definition we have

∑
H∈(V Tη`)−1(tE,`)

JMK(H) ≤
∑

JMK ≤ 1, for all ` ∈ N. Hence,
by applying Lemma 131 and by definition of Nakajima tree equality, we have:

JMK(E) =
∑
H∈EV

JMK(H) =
∑

H∈
⋂
`∈N((V Tη`)−1(tE,`))

JMK(H)

= inf
`∈N

∑
H∈(V Tη`)−1(tE,`)

JMK(H)

= inf
`∈N

(PT η` (M)(tE,`)).

150

Let us prove point (2). On the one hand, (PT η` (M)(tE,`))`∈N is clearly a bounded below sequence.
On the other hand, from (5.15) it is also monotone decreasing. Indeed, for all ` ∈ N:

PT η`+1(M)(tE,`+1) =
∑

H∈(V Tη`+1)−1(tE,`+1)

JMK(H)

≤
∑

H∈(V Tη`)−1(tE,`)

JMK(H) = PT η` (M)(tE,`).

Thus, lim`→∞(PT η` (M)(tE,`))`∈N = inf`∈N (PT η` (M)(tE,`)) = JMK(E), and point (2) follows by
definition of limit.

Lemma 133. Let M,N ∈ Λ∅⊕. If M =cxt N then JMK(E) = JNK(E), for all E ∈ Λ∅⊕/ =cxt.

Proof. Suppose toward contradiction that JMK(E) 6= JNK(E) and consider ε > 0 such that
2ε ≤ |JMK(E)− JNK(E)|. By Lemma 132.(2) there exist ` ∈ N such that:

JMK(E) ≈ε PT η` (M)(tE,`) JNK(E) ≈ε PT η` (N)(tE,`).

By Theorem 129, from M =cxt N we obtain M =PTη N , and hence PT η` (M) = PT η` (N). By
Fact 130, JMK(E) ≈2ε JNK(E), i.e. |JMK(E)− JNK(E)| < 2ε. A contradiction.

Remark 17. Observe that the statement of Lemma 133 may fail when Λ⊕ is endowed with a
different operational semantics than head reduction. As an example, recall the terms M ,
λxy.(x⊕ y) and N , (λxy.x)⊕ (λxy.y) discussed in the introduction of this chapter (see (5.1)).
In the lazy cbn, M and N are context equivalent [27]. Moreover, M is a value for lazy cbn,
while N reduces with equal probability 1

2 to T = λxy.x and F = λxy.y. However, M , T and
F are pairwise context inequivalent since, by setting C = [·]IΩ, we have that C[M], C[T], and
C[F] converge with probability 1

2 , 1, and 0, respectively. Therefore, by setting E as the lazy cbn
context equivalent class containing M , we have JMK(E) = 1, while JNK(E) = 0.

We can now state and prove the fundamental result of this chapter:

Theorem 134 (Full abstraction). For all M,N ∈ Λ⊕:

M =cxt N ⇔M ∼ N.

Proof. The right-to-left direction is Theorem 126.(2). Concerning the converse, we first consider
the case of closed terms. So, let M,N ∈ Λ∅⊕ be such that M =cxt N . We prove that there exists
probabilistic applicative bisimulation R containing =cxt. We define R as follows:

{(P,Q) ∈ Λ∅⊕ × Λ∅⊕ | P =cxt Q} ∪ {(νx.H, νx.H ′) ∈ H̃NF× H̃NF | λx.H =cxt λx.H
′}.

Let us prove that R is a probabilistic applicative bisimulation. Since =cxt is an equivalence
relation, thenR is. Now, let (νx.H, νx.H ′), (P,Q) ∈ R, E ∈ (Λ∅⊕∪H̃NF)/R, and let l ∈ Λ∅⊕∪{τ}.
We have to show that:

(1) P⊕(P, l, E) = P⊕(Q, l, E),

(2) P⊕(νx.H, l, E) = P⊕(νx.H ′, l, E).

Let us prove point (1). If l ∈ Λ∅⊕ then P⊕(P,L,E) = 0 = P⊕(Q,L,E). If l = τ we define
Ê , {λx.H ∈ HNF∅ | νx.H ∈ E} ∪ {P ′ ∈ Λ∅⊕ | P ′ ∈ E}. Then, by definition:

P⊕(P, τ, E) = JP K(Ê) P⊕(Q, τ,E) = JQK(Ê).

151

M N

M̃ νx.xΩ νx.xI

I(Ω⊕ I) . . . IΩ . . . II . . .

∞ Ĩ ∞ Ĩ

1 τ
1
2

τ 1
2

τ

L6=I1 I L 6=II1 I1 L6=I

1
2

τ 1
2

τ 1 τ 1 τ

Figure 5.5: Markov chain for M = λx.x(Ω⊕ I) and N = λx.(xΩ⊕ xI).

Since (P,Q) ∈ R and E ∈ (Λ∅⊕ ∪ H̃NF)/R, it holds that P =cxt Q and Ê ∈ Λ∅⊕/=cxt
. By

applying Lemma 133 we have JP K(Ê) = JQK(Ê), and hence P⊕(P, τ, E) = P⊕(Q, τ,E). Let
us now prove point (2). If l = τ then P⊕(νx.H, τ, E) = 0 = P⊕(νx.H ′, τ, E). Otherwise, let
l = L ∈ Λ∅⊕. Since =cxt =≤cxt ∩ (≤cxt)

op, by Lemma 117.(3) we have that λx.H =cxt λx.H
′

implies (λx.H)L =cxt (λx.H ′)L. From Proposition 97.(2) and Proposition 100 we have:

H[L/x] =cxt (λx.H)L =cxt (λx.H ′)L =cxt H
′[L/x].

Therefore, H[L/x] ∈ E if and only ifH ′[L/x] ∈ E, and hence P⊕(νx.H,L,E) = P⊕(νx.H ′, L,E).
Now, let M,N ∈ Λ

{x1,...,xn}
⊕ be such that M =cxt N . Since =cxt =≤cxt ∩ (≤cxt)

op, by
repeatedly applying Lemma 117.(1) and Lemma 119.(1), λx1 . . . xn.M =cxt λx1 . . . xn.N . Since
these terms are closed, we obtain λx1 . . . xn.M ∼ λx1 . . . xn.N . Finally, from Definition 79 we
conclude M ∼ N .

5.4.3 PAS is not complete

Theorem 134 establishes a precise correspondence between PAB and context equivalence. But
what about PAS and context preorder? The Soundness Theorem (Theorem 126.(1)) states that
the former implies the latter, so that it is natural to wonder whether the converse holds as well.
Surprisingly enough, as in the case of the lazy reduction strategies (see [27] and [22]), the answer
is negative.

A counterexample to PAS completeness, analogous to the one in [22] for cbv, is given by:

M , λx.x(Ω⊕ I) N , λx.(xΩ⊕ xI). (5.16)

whose Markov chain is sketched in Figure 5.5. First, observe that M and N are incomparable
with respect to PAS:

Lemma 135. Neither M - N nor N -M hold.

Proof. Let M - N . Then, we have P⊕(M, τ, M̃) ≤ P⊕(N, τ,-(M̃)), so that νx.xΩ ∈ -(M̃),
and M̃ - νx.xΩ. Hence, P⊕(M̃, I, I(Ω ⊕ I)) ≤ P⊕(νx.xΩ, I,-(I(Ω ⊕ I))). This means that

152

IΩ ∈ -(I(Ω ⊕ I)), so that I(Ω ⊕ I) - IΩ. So 1
2 = P⊕(I(Ω ⊕ I), τ, Ĩ) ≤ P⊕(IΩ, τ,-(̃I)) = 0. A

contradiction.
Now, suppose N -M . Then P⊕(N, τ, νx.xI) ≤ P⊕(M, τ,-(νx.xI)), so that M̃ ∈ -(νx.xI),

and νx.xI - M̃ . Hence, P⊕(νx.xI, I, II) ≤ P⊕(M̃, I,-(II)). This means that I(Ω ⊕ I) ∈
-(II), so that II - I(Ω ⊕ I). Therefore, 1 = P⊕(II, τ, Ĩ) ≤ P⊕(I(Ω ⊕ I), τ,-(̃I)) = 1

2 . A
contradiction.

However, the two terms can be compared through the context preorder relation. First, we
need some technical lemmas.

Lemma 136. For all M ∈ Λ⊕, JM [Ω/x]K ≤D JM [I/x]K.

Proof. Let us consider the context (λx.M)[·] ∈ CΛ⊕. Since JΩK ≤D JIK, by Lemma 99.(1) we
obtain J(λx.M)ΩK ≤D J(λx.M)IK. From Corollary 116, we conclude JM [Ω/x]K ≤D JM [I/x]K.

Lemma 137. For all M ∈ Λ⊕,
∑

JM [(Ω⊕ I)/x]K ≤ 1
2 ·
∑

JM [Ω/x]K + 1
2 ·
∑

JM [I/x]K.

Proof. By Theorem 115 it is enough to prove the following inequation for all n ∈ N:∑
H∈HNF

Hn(M [(Ω⊕ I)/x], H) ≤
∑

H∈HNF

1

2
· H∞(M [Ω/x], H) +

1

2
· H∞(M [I/x], H). (5.17)

The proof is by induction on (n, |M |), where n ∈ N and |M | is the size of M , i.e. the number of
nodes in the syntax tree of M . We have several cases:

• If M = λx.M ′ then, by using the induction hypothesis and Lemma 109.(2):∑
H∈HNF

Hn(M [(Ω⊕ I)/x], H) =
∑

λx.H∈HNF

Hn(λx.(M ′[(Ω⊕ I)/x]), λx.H)

=
∑

H∈HNF

Hn(M ′[(Ω⊕ I)/x], H)

≤
∑

H∈HNF

1

2
· H∞(M ′[Ω/x], H) +

1

2
· H∞(M ′[I/x], H)

=
∑

H∈HNF

1

2
· H∞(M [Ω/x], H) +

1

2
· H∞(M [I/x], H).

• Suppose now that M is a head normal form. From the previous case we can assume
w.l.o.g. that M is a neutral term of the form y ~P , where ~P = P1 . . . Pm for some m ∈ N and
P1, . . . , Pm ∈ Λ⊕. If y 6= x then y ~P [(Ω ⊕ I)/x], y ~P [Ω/x], and y ~P [I/x] are head normal
forms, and the inequation in (5.17) is straightforward. Otherwise, y = x. If n ≥ 2 then, by
using the induction hypothesis, Lemma 109.(1), and Lemma 136, we have:∑

H∈HNF

Hn(M [(Ω⊕ I)/x], H) =
∑

H∈HNF

Hn((Ω⊕ I)~P [(Ω⊕ I)/x], H)

=
∑

H∈HNF

1

2
· Hn−1(Ω~P [(Ω⊕ I)/x], H)

+
1

2
· Hn−1(I~P [(Ω⊕ I)/x], H)

=
1

2
·
∑

H∈HNF

Hn−2(~P [(Ω⊕ I)/x], H)

153

≤ 1

2
·
∑

H∈HNF

1

2
· H∞(~P [Ω/x], H) +

1

2
· H∞(~P [I/x], H)

≤ 1

2
·
∑

H∈HNF

1

2
· H∞(~P [I/x], H) +

1

2
· H∞(~P [I/x], H)

=
∑

H∈HNF

1

2
· H∞(~P [I/x], H)

=
∑

H∈HNF

1

2
· H∞(Ω~P [Ω/x], H) +

1

2
· H∞(I~P [I/x], H)

=
∑

H∈HNF

1

2
· H∞(M [Ω/x], H) +

1

2
· H∞(M [I/x], H).

If n < 2 then Hn(M [(Ω⊕ I)/x]) = 0.

• Last, suppose that M is not a head normal form. By using the induction hypothesis,
Lemma 109.(1) and Lemma 109.(3), we have:∑

H∈HNF

Hn(M [(Ω⊕ I)/x], H) =

=
∑

H∈HNF

∑
l+l′=n

∑
H′∈HNF

Hl(M,H ′) · Hl
′
(H ′[(Ω⊕ I)/x], H)

=
∑

l+l′=n

∑
H′∈HNF

Hl(M,H ′) ·

(∑
H∈HNF

Hl
′
(H ′[(Ω⊕ I)/x], H)

)

=
∑

l+l′=n
l′<n

∑
H′∈HNF

Hl(M,H ′) ·

(∑
H∈HNF

Hl
′
(H ′[(Ω⊕ I)/x], H)

)

≤
∑

H′∈HNF

H∞(M,H ′) ·

(∑
H∈HNF

1

2
· H∞(H ′[Ω/x], H) +

1

2
· H∞(H ′[I/x], H)

)

=
1

2
·
∑

H∈HNF

H∞(M [Ω/x], H) +
1

2
·
∑

H∈HNF

H∞(M [I/x], H).

This concludes the proof.

Lemma 138. It holds that M ≤cxt N .

Proof. By Lemma 119 it is enough to show that M ≤app N . Since M,N ∈ Λ∅⊕, this amounts
to check that, for all n ∈ N and for all L1, . . . , Ln ∈ Λ∅⊕, it holds that

∑
JML1 . . . LnK ≤∑

JNL1 . . . LnK. The proof is by induction on n ∈ N:

• If n = 0 then, by Proposition 97.(3) and Proposition 97.(4), we have:
∑

JMK = 1 =
1
2 ·
∑

JxΩK + 1
2 ·
∑

JxIK =
∑

JxΩ⊕ xIK =
∑

JNK.

• Suppose n = 1. Then:∑
JMLK =

∑
J(λx.x(Ω⊕ I))LK

=
∑

JL(Ω⊕ I)K Prop. 97.(2)

154

=
∑

λx.H∈ supp(JLK)

JLK(λx.H) ·
∑

JH[Ω⊕ I/x]K Prop. 97.(1)

≤ 1

2
·

∑
λx.H∈ supp(JLK)

JLK(λx.H) ·
∑

JH[Ω/x]K

+
1

2
·

∑
λx.H∈ supp(JLK)

JLK(λx.H) ·
∑

JH[I/x]K Lem. 137

=
1

2
·
∑

JLΩK +
1

2
·
∑

JLIK Prop. 97.(1)

=
1

2
·
∑

J(xΩ)[L/x]K +
1

2
·
∑

J(xI)[L/x]K

=
∑

H∈ supp(JxΩK)∪ supp(JxIK)

1

2
·
(
JxΩK + JxIK

)
(H) ·

∑
JH[L/x]K

=
∑

H∈ suppJxΩ⊕xIK)

JxΩ⊕ xIK(H) ·
∑

JH[L/x]K Prop. 97.(4)

=
∑

λx.H∈ supp(JNK)

JNK(λx.H) ·
∑

JH[L/x]K Prop. 97.(3)

=
∑

JNLK. Prop. 97.(1)

• Finally, suppose n > 1. We define:

P ,ML1 . . . Ln−1

Q , NL1 . . . Ln−1

r ,
∑

λx.H∈ supp(JQK)

JQK(λx.H) ·
∑

JH[L/x]K

r′ =
∑

λx.H∈ supp(JP K)

JP K(λx.H) ·
∑

JH[L/x]K.

Since by induction hypothesis 0 ≤
∑

JQK −
∑

JP K, r − r′ must be positive. By Proposi-
tion 97.(1) this quantity is

∑
JQLnK−

∑
JPLnK. Therefore,

∑
JPLnK ≤

∑
JQLnK.

Summing up, we have:

Theorem 139. PAS is not complete (hence fully abstract) with respect to context preorder.

5.4.4 Recovering full abstraction for PAS: a conjecture

In [58] Larsen and Skou present a language of “tests” for labelled Markov chains. Intuitively,
a test can be seen as an algorithm for performing an experiment on a program: during the
execution of a test, one can observe the success and the failure of the experiment with a given
probability. In [93] van Breugel et al. prove that Larsen and Skou’s testing equivalence on labelled
Markov chains coincides with probabilistic bisimilarity. Moreover, they extend the language of
tests with the so-called “disjunctive” ones and show that the resulting equivalence characterizes
probabilistic similarity.

Let us introduce the language of tests:

155

Definition 87 (Testing language). Let (S,L,P) be a labelled Markov chain. The testing lan-
guage T(S,L,P) is given by the grammar:

t := ω | a.t | (t, t)

where a ∈ L. The extended testing language T ∨(S,L,P) is given by the grammar:

t := ω | a.t | (t, t) | t ∨ t

where a ∈ L and t ∨ t is called disjunctive test.

Roughly, the term ω represents the test that does nothing but successfully terminate. The
term a.t performs the action a and, in case of success, it proceeds with the test t. The test
(t, t′) makes two copies of the current state, allows both tests t and t′ on each copy, and records
success in case both sub-tests succeed. Finally, the test t ∨ t′ makes two copies of the current
state, allows both tests t and t′ on each copy, and records success in case at least one sub-test
succeeds.

Formally, the probability of success is defined as follows:

Definition 88 (Success probability). Let (S,L,P) be a labelled Markov chain. For all s ∈ S
and t ∈ T ∨(S,L,P), we define:

Prω(s) , 1 Pra.t(s) ,
∑
s′∈S

P(s, a, s′) · Prt(s
′)

Pr(t,t′)(s) , Prt(s) · Prt′(s) Prt∨t′(s) , Prt(s) + Prt′(s)− Prt(s) · Prt′(s).

The following theorem states that testing equivalence characterizes probabilistic (bi)similarity
on labelled Markov chains:

Theorem 140 (Testing equivalence [93]). Let (S,L,P) be a labelled Markov chain and let s, s′ ∈
S:

(1) s ∼ s′ if and only if Prt(s) = Prt(s
′), for every t ∈ T(S,L,P);

(2) s - s′ if and only if Prt(s) ≤ Prt(s
′), for every t ∈ T ∨(S,L,P).

Example 32. Consider for example the terms in (5.16). Since Lemma 135 states that M - N
does not hold, by Theorem 140.(2) there exists a test t ∈ T ∨

(Λ∅⊕] H̃NF,Λ∅⊕]{τ},P⊕)
such that

Prt(M) > Prt(N). It suffices to set t , τ.(I.τ.ω) ∨ (I.τ.ω). Indeed, on the one hand:

Prt(M) = 2 · PrI.τ.ω(M̃)− PrI.τ.ω(M̃)2 = 2 · Prτ.ω(I(Ω⊕ I))− Prτ.ω(I(Ω⊕ I))2

= Prω (̃I)−
(

1

2
· Prω (̃I)

)2

=
3

4
.

On the other hand:

Prt(N) =
1

2
· Pr(I.τ.ω)∨(I.τ.ω)(νx.xΩ) +

1

2
· Pr(I.τ.ω)∨(I.τ.ω)(νx.xI)

=
(

PrI.τ.ω(νx.xΩ)− 1

2
· PrI.τ.ω(νx.xΩ)2

)
+
(

PrI.τ.ω(νx.xI)− 1

2
· PrI.τ.ω(νx.xI)2

)
=
(

Prτ.ω(IΩ)− 1

2
· Prτ.ω(IΩ)2

)
+
(

Prτ.ω(II)− 1

2
· Prτ.ω(II)2

)
= Prω (̃I)− 1

2
· Prω (̃I)2 =

1

2
.

156

The perfect matching between the (extended) testing equivalence and probabilistic similar-
ity sheds lights on the meaning of Theorem 139. Let us see how. By Theorem 140, proving
that PAS is complete for the context preorder amounts to show that, for every M,N ∈ Λ⊕,
each test t ∈ T ∨(S,L,P) satisfying Prt(M) < Prt(N) can be converted to a context Ct such that∑

JCt[M]K <
∑

JCt[N]K. This means that we require contexts in Λ⊕ to simulate somehow the
quantitative behaviour of tests. However, anybody familiar with the historical developments of
the full abstraction problem for PCF [15, 76] would immediately regard disjunctive tests as some-
thing that cannot easily be implemented by terms in Λ⊕. Indeed, by looking at Definition 88, the
probability of success for disjunctive tests is closely related to the observational behaviour of the
term [M ‖ N] 7→ L, a variant of Plotkin’s parallel disjunction [76]. Intuitively, the operational
meaning of parallel disjunction can be described as follows: if either the evaluation of M or the
evaluation of N terminates, then the behaviour of [M ‖ N] 7→ L is the same as the behaviour
of L, otherwise this term does not terminate. Thus, in a probabilistic setting, [M ‖ N] 7→ L
converges to L with a probability that is equal to the probability that either M or N converge.
Adding parallel disjunction to the probabilistic λ-calculus requires a further rule in Definition 70
when introducing a big-step probabilistic operational semantics:

M ⇓ D N ⇓ E L ⇓ F

[M ‖ N] 7→ L ⇓ (
∑

D +
∑

E − (
∑

D ·
∑

E)) ·F
s6

In [23] the language Λ⊕,or obtained by adding to Λ⊕ the parallel disjunction operator has
been studied in a call-by-value setting: it turns out that shifting from Λ⊕ to Λ⊕,or is enough to
restore full abstraction for PAS.

We conjecture that the same happens when the head reduction strategy is considered. Let
us motivate this claim. Suppose Λ⊕,or is endowed with a probabilistic operational semantics 〈〈·〉〉
based on the head reduction satisfying the following equations for compositionality:

〈〈H〉〉 = H (5.18)
〈〈λx.M〉〉 = λx.〈〈M〉〉 (5.19)

〈〈MN〉〉 =
∑

λx.P ∈ supp(〈〈M〉〉)

〈〈M〉〉(λx.P) · 〈〈P [N/x]〉〉

+
∑

H ∈ supp(〈〈M〉〉)∩NEUT

〈〈M〉〉(H) ·HN (5.20)

〈〈M ⊕N〉〉 =
1

2
· 〈〈M〉〉+

1

2
· 〈〈N〉〉 (5.21)

〈〈[M ‖ N] 7→ L〉〉 =

(∑
〈〈M〉〉+

∑
〈〈N〉〉 −

(∑
〈〈M〉〉 ·

∑
〈〈N〉〉

))
· 〈〈L〉〉. (5.22)

First, note that from the equation in (5.20) it follows that:

〈〈(λx.M)N〉〉 = 〈〈M [N/x]〉〉. (5.23)

Then, let us consider the context C , (λx.x(λy.[y ‖ y] 7→ I))[·]. On the one hand, we have:

〈〈C[M]〉〉 = 〈〈(λx.x(λy.[y ‖ y] 7→ I))M〉〉
= 〈〈M(λy.[y ‖ y] 7→ I)〉〉 by (5.23)
= 〈〈(λy.[y ‖ y] 7→ I)(Ω⊕ I)〉〉 by (5.23)
= 〈〈[(Ω⊕ I) ‖ (Ω⊕ I)] 7→ I〉〉 by (5.23)

157

=

(
2 ·
∑
〈〈Ω⊕ I〉〉 −

(∑
〈〈Ω⊕ I〉〉

)2)
· I by (5.22)

=

(∑
〈〈I〉〉 −

(
1

2
·
∑
〈〈I〉〉

)2)
· I =

3

4
· I by (5.21)

On the other hand, we have:

〈〈C[N]〉〉 = 〈〈(λx.x(λy.[y ‖ y] 7→ I))N〉〉
= 〈〈N(λy.[y ‖ y] 7→ I)〉〉 by (5.23)

=
∑

λx.P∈ supp(〈〈N〉〉)

〈〈N〉〉(λx.P) · 〈〈P [(λy.[y ‖ y] 7→ I)/x]〉〉 by (5.20)

=
∑

λx.P∈ supp(〈〈N〉〉)

1

2
· 〈〈λx.xΩ〉〉(λx.P) · 〈〈P [(λy.[y ‖ y] 7→ I)/x]〉〉

+
1

2
· 〈〈λx.xI〉〉(λx.P) · 〈〈P [(λy.[y ‖ y] 7→ I)/x]〉〉 by (5.21)

=
1

2
· 〈〈(λy.[y ‖ y] 7→ I)Ω〉〉+

1

2
· 〈〈(λy.[y ‖ y] 7→ I)I〉〉

=
1

2
· 〈〈[Ω ‖ Ω] 7→ I〉〉+

1

2
· 〈〈[I ‖ I] 7→ I〉〉 by (5.23)

=
1

2
·
(

2 ·
∑
〈〈Ω〉〉 −

(∑
〈〈Ω〉〉

)2)
· I +

1

2
·
(

2 ·
∑
〈〈I〉〉 −

(∑
〈〈I〉〉

)2)
· I by (5.22)

=
1

2
· I

Therefore, we have
∑
〈〈C[N]〉〉 = 1

2 <
3
4 =

∑
〈〈C[M]〉〉, so that M ≤cxt N does not hold in Λ⊕,or.

158

Chapter 6

Conclusion and future developments

In this thesis we investigated non-laziness in both implicit complexity and probabilistic λ-calculus.
We started with an analysis of the computational and proof-theoretical properties of LEM, a sys-
tem able to exponentially compress Mairson and Terui’s mechanisms of linear weakening and
contraction [64, 65], and we explored its potential applications. Then we introduced LAM, a
system endowed with a weaker version of the additive rules, called linear additives. The pres-
ence of linear additives is harmless from a complexity-theoretic viewpoint, and no lazy reduction
strategy is required to prevent exponential explosions in normalization, as opposed to what hap-
pens with the standard additives. Also, we considered a probabilistic formulation of STA [40],
called STA⊕, with a non-deterministic variant of linear additives. STA⊕ is able to capture the
probabilistic polynomial time functions as well as the classes PP and BPP. Last, we presented
the untyped probabilistic λ-calculus Λ⊕ endowed with an operational semantics based on head
spine reduction, a variant of the head reduction strategy giving rise to the same big-step seman-
tics. We have proven that probabilistic applicative bisimilarity is fully abstract with respect to
context equivalence, showing that “non-laziness” is crucial to recover a correspondence between
bisimilarity and context equivalence in the call-by-name probabilistic λ-calculus.

We conclude by briefly discussing possible future directions, chapter by chapter.

Chapter 3.

• In Section 3.2.2 we conjectured that a version of the general separation property for the
λ-calculus [18] holds in the linear setting (Conjecture 7), and we showed how this result
would imply the existence of a duplicator for every finite set of closed terms in βη-normal
form, so connecting linear duplication with the standard notion of separation:

linear separation ∼ linear duplication

To motivate our conjecture, let us consider the Böhm Theorem [17], a special case of the
separation result in [18]. This theorem states that, for every pair of closed βη-normal
forms M,N and all closed terms P,Q, a closed λ-term F exists such that FM →∗β P and
FN →∗β Q. Is it the case that F can be taken linear whenever M , N , P , Q are? It seems
that the answer is positive, as the construction of F is essentially obtained by combining
two kinds of λ-terms: the permutators (with shape λx1 . . . xnxn+1.xn+1x1 . . . xn) and the
selectors (with shape λx1 . . . xn.xi). Permutators are clearly linear terms, while selectors
could be linearly defined, following Definition 5, as terms with form:

λx1 . . . xn.(x1I k1. . .I) . . . (xi−1I
ki−1. . . I)(xi+1I

ki+1. . . I) . . . (xnIkn. . .I)xi

159

where I = λx.x and each k1, . . . , kn must be large enough. Intuitively, xjI kj. . .I is able to
erase by linear consumption all potential closed linear λ-terms replacing xj , provided that
their size is at most kj .

• Other possible future directions are suggested by the applications of LEM discussed in Sec-
tion 3.4. On the one hand, we presented an encoding of the boolean circuits not preserving
their depth. Moving to unbounded fan-in proof nets for LEM would improve the correspon-
dence, where the rules p, w, c and d in Figure 3.5 would be expressed by nodes and boxes,
like in Linear Logic. Operations on them would compactly perform duplication and get
rid of garbage, possibly improving [89, 73, 8]. On the other hand, we contributed to the
problem of defining numeral systems in linear settings. In [63], Mackie has recently intro-
duced linear variants of numeral systems. He shows that successor, addition, predecessor,
and subtraction have representatives in the linear λ-calculus. We could not find how giving
type in LEM to some of the terms of Mackie’s numeral systems. We conjecture that, by
merging Mackie’s encoding and Scott numerals [24], numeral systems exist which LEM can
give a type to. The cost would be to extend LEM with recursive types, following Roversi
and Vercelli [79].

Chapter 4. We strongly believe that linear additives can have fruitful applications in the field
of implicit complexity, especially when the goal is to capture non-deterministic or probabilistic
(sub-)polynomial complexity classes. A reasonable question in this framework could be following:
is it possible to define a weaker version of the additive disjunction ⊕, let us denote it ∨, based
on the same principles of the linear additive conjunction ∧? We tried to answer this question by
extending LAM with the following natural deduction rules for ∨:

Γ `M : Ai `W : A3−i

Γ ` injWi (M) : A1 ∨A2

∨I
Γ `M : A1 ∨A2 x1 : A1 `M1 : C x2 : A2 `M2 : C

Γ ` caseCM of [inj1(x1)→ N1 | inj2(x2)→ N2] : C
∨E

where A1, A2 and C are closed types free from negative occurrences of ∀, and W is an extended
value (see Definitions 40 and 41). Let us call LAM∨ the resulting system. According to this
extension, the reduction relation → in Definition 41 must be endowed with the rule below:

caseC injW
′

i (W) of [inj1(x1)→ N1 | inj2(x2)→ N2]→ Ni[W/xi] (6.1)

The intended meaning of the above rules becomes apparent as soon as we define a translation
of LAM∨ into IMLL2. This translation is obtained by extending Definition 43 with the following
cases:

(A1 ∨A2)• , B⊗ (A•1 ⊗A•2)

injW1 (M)• , 〈tt, 〈M•,W •〉〉
injW2 (M)• , 〈ff, 〈W •,M•〉〉

(caseCM of [inj1(x1)→ N1 | inj2(x2)→ N2])• , let M• be y, y′ in (let y′ be y1, y2 in

(if y then N•1 [y1/x1] else N•2 [y2/x2]))

where B is the type of booleans with inhabitants tt and ff as in (3.2) of Section 3.1.3, and the
if-then-else construct is as in (3.10) of Section 3.2.2, the latter containing an eraser EC• of
type C•. Assuming Lemma 49 still holds, one can easily check that the following is a reduction
in IMLL2:

(caseC injW
′

i (W) of [inj1(x1)→ N1 | inj2(x2)→ N2])• →∗β N•i [W •/xi]

160

which allows us to prove a simulation result relating LAM∨ and IMLL2 similar to Theorem 50.
Nonetheless, from the viewpoint of implicit complexity, the new connective ∨ suffers from the

same drawbacks as ⊕. Indeed, in order to fully evaluate terms we are forced to introduce the
standard conversion rule (we omit types for the sake of simplicity):

case (caseM of [inj1(x1)→ N1 | inj2(x2)→ N2]) of [inj1(y1)→ P1 | inj2(y2)→ P2]

↓
caseM of [inj1(x1)→ (caseN1 of [inj1(y1)→ P1 | inj2(y2)→ P2]) |

inj2(x2)→ (caseN2 of [inj1(y1)→ P1 | inj2(y2)→ P2])]

(6.2)

which causes an exponential blow up in normalization analogous to those in IMALL2 (see Propo-
sition 41). We recall that the exponential explosion in IMALL2 is due to the presence of implicit
contractions in the inference rule &I, as stressed in Figure 4.2(b). To overcome this drawback,
we designed the linear additives, where contraction is expressed in a “linear” way by exploiting
the mechanism of linear duplication of Theorem 10. By contrast, the rule ∨E has a hidden form
of cocontraction, i.e. an implication of the form C ⊗ C (C, which can hardly be expressed by
some linear mechanism in IMLL2. In analogy with Chapter 3, a possible solution could be the
introduction of “lazy” reduction rules that forbid the conversion in (6.2). The result we would
like to achieve in LAM∨ is to restore a linear time normalization for terms having a special kind
of type and according to a specific “lazy” reduction strategy, quite like in the case of LEM with
Theorem 29. This investigation is left to future work.

Chapter 5. Our full abstraction result completes the picture about fully abstract descriptions
of the probabilistic head reduction context equivalence, finally adding a coinductive characteri-
sation. To the best of our knowledge, this picture can be resumed by the equivalences of all the
following items, for M and N probabilistic λ-terms:

• M and N are context equivalent,

• M and N have the same probabilistic Nakajima tree [60, 61],

• M and N have the same denotation in the reflexive arena U of the cartesian closed category
of probabilistic concurrent game semantics [20],

• M and N have the same denotation in the reflexive object D∞ of the cartesian closed
category of probabilistic coherence spaces or of the R+-weighted relations [20, 61],

• M and N are applicatively bisimilar (this thesis),

• M and N are testing equivalent according to the testing language T0 (a consequence of
[92], here Theorem 140.(1), and this thesis).

In the final part of the chapter we introduced a counterexample to the full abstraction prob-
lem for probabilistic applicative similarity and we conjectured that extending the calculus with
Plotkin’s parallel disjunction [M ‖ N] 7→ L (see [76]), as previously done in the call-by-value
setting [23], is enough to restore this property. We also motivated our conjecture by showing that
endowing the extended calculus Λ⊕,or with a probabilistic operational semantics that satisfies
some reasonable equations for compositionality is enough to circumvent the counterexample. A
possible future work could be to prove this conjecture in Λ⊕,or.

161

162

Bibliography

[1] Samson Abramsky. The lazy λ- calculus. 1990.

[2] Samson Abramsky and C-H Luke Ong. Full abstraction in the lazy lambda calculus. Infor-
mation and Computation, 105(2):159–267, 1993.

[3] Peter Aczel. An introduction to inductive definitions. In Studies in Logic and the Founda-
tions of Mathematics, volume 90, pages 739–782. Elsevier, 1977.

[4] Sandra Alves, Maribel Fernández, Mário Florido, and Ian Mackie. The Power of Linear
Functions. In Zoltán Ésik, editor, Computer Science Logic, 20th International Workshop,
CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hungary, September 25-29, 2006,
Proceedings, volume 4207 of Lecture Notes in Computer Science, pages 119–134. Springer,
2006.

[5] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[6] Andrea Asperti. Light affine logic. In Proceedings. Thirteenth Annual IEEE Symposium on
Logic in Computer Science (Cat. No. 98CB36226), pages 300–308. IEEE, 1998.

[7] Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Transactions on
Computational Logic (TOCL), 3(1):137–175, 2002.

[8] Clément Aubert. Sublogarithmic uniform boolean proof nets. In Jean-Yves Marion, edi-
tor, Proceedings Second Workshop on Developments in Implicit Computational Complexity,
Saarbrücken, DICE 2011, Germany, April 2nd and 3rd, 2011., volume 75 of EPTCS, pages
15–27, 2011.

[9] Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: a language for polynomial time
computation. In International Conference on Foundations of Software Science and Compu-
tation Structures, pages 27–41. Springer, 2004.

[10] Hendrik Pieter Barendregt. The lambda calculus: Its syntax and semantics. 1984. Studies
in Logic and the Foundations of Mathematics, 1984.

[11] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types. Cam-
bridge University Press, 2013.

[12] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–May
2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), pages 307–314, New York,
NY, USA, 1968. ACM.

163

[13] Spephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the
polytime functions. Computational complexity, 2(2):97–110, 1992.

[14] Stephen J Bellantoni, Karl-Heinz Niggl, and Helmut Schwichtenberg. Higher type recursion,
ramification and polynomial time. Annals of Pure and Applied Logic, 104(1-3):17–30, 2000.

[15] Gérard Berry and Pierre-Louis Curien. Sequential algorithms on concrete data structures.
Theoretical Computer Science, 20(3):265–321, 1982.

[16] Bard Bloom. Can lcf be topped? flat lattice models of typed λ-calculus. Information and
Computation, 87(1-2):264–301, 1990.

[17] Corrado Böhm. Alcune proprieta delle forme β-η-normali nel λ-k-calcolo. Pubblicazioni
dell’Istituto per le Applicazioni del Calcolo, 696:19, 1968.

[18] Corrado Böhm, Mariangiola Dezani-Ciancaglini, P Peretti, and S Ronchi Della Rocca. A
discrimination algorithm inside λ-β-calculus. Theoretical Computer Science, 8(3):271–291,
1979.

[19] Johannes Borgström, Ugo Dal Lago, Andrew D Gordon, and Marcin Szymczak. A lambda-
calculus foundation for universal probabilistic programming. In ACM SIGPLAN Notices,
volume 51, pages 33–46. ACM, 2016.

[20] Pierre Clairambault and Hugo Paquet. Fully abstract models of the probabilistic lambda-
calculus. In Dan R. Ghica and Achim Jung, editors, 27th EACSL Annual Conference on
Computer Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, volume 119 of
LIPIcs, pages 16:1–16:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[21] Alan Cobham. The intrinsic computational difficulty of functions. 1965.

[22] Raphaëlle Crubillé and Ugo Dal Lago. On probabilistic applicative bisimulation and call-
by-value λ-calculi. In European Symposium on Programming Languages and Systems, pages
209–228. Springer, 2014.

[23] Raphaëlle Crubillé, Ugo Dal Lago, Davide Sangiorgi, and Valeria Vignudelli. On applica-
tive similarity, sequentiality, and full abstraction. In Correct System Design, pages 65–82.
Springer, 2015.

[24] H. B. Curry and R. Feys. Combinatory Logic, Volume I. North-Holland, 1958. Second
printing 1968.

[25] Haskell B Curry. Functionality in combinatory logic. Proceedings of the National Academy
of Sciences of the United States of America, 20(11):584, 1934.

[26] Haskell Brooks Curry, Robert Feys, William Craig, J Roger Hindley, and Jonathan P Seldin.
Combinatory logic, volume 1. North-Holland Amsterdam, 1958.

[27] Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coinductive equivalences for
higher-order probabilistic functional programs. 49(1):297–308, 2014.

[28] Ugo Dal Lago and Paolo Parisen Toldin. A higher-order characterization of probabilistic
polynomial time. Information and Computation, 241:114–141, 2015.

[29] Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda
calculus. RAIRO-Theoretical Informatics and Applications, 46(3):413–450, 2012.

164

[30] Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Information
and Computation, 183(1):123–137, 2003.

[31] Luca De Alfaro. Formal verification of probabilistic systems. Number 1601. Citeseer, 1997.

[32] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic λ-calculus and
quantitative program analysis. Journal of Logic and Computation, 15(2):159–179, 2005.

[33] Alejandro Díaz-Caro and Gilles Dowek. Non determinism through type isomorphism. arXiv
preprint arXiv:1303.7334, 2013.

[34] Thomas Ehrhard, Michele Pagani, and Christine Tasson. The Ccomputational Meaning of
Probabilistic Coherence Spaces. In Martin Grohe, editor, Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science (LICS 2011), IEEE Computer Society
Press, pages 87–96, 2011.

[35] Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of
probabilistic coherence spaces. In 2011 IEEE 26th Annual Symposium on Logic in Computer
Science, pages 87–96. IEEE, 2011.

[36] Thomas Ehrhard, Michele Pagani, and Christine Tasson. Probabilistic Coherence Spaces
are Fully Abstract for Probabilistic PCF. In P. Sewell, editor, The 41th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL14, San
Diego, USA. ACM, 2014.

[37] Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction for probabilistic
PCF. J. ACM, 65(4):23:1–23:44, 2018.

[38] Marco Gaboardi and Simona Ronchi Della Rocca. A soft type assignment system for λ-
calculus. In International Workshop on Computer Science Logic, pages 253–267. Springer,
2007.

[39] Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. Soft linear logic and
polynomial complexity classes. Electronic Notes in Theoretical Computer Science, 205:67–
87, 2008.

[40] Marco Gaboardi and Simona Ronchi Della Rocca. From light logics to type assignments: a
case study. Logic Journal of the IGPL, 17(5):499–530, 2009.

[41] Gerhard Gentzen. Untersuchungen über das logische schließen. i. Mathematische zeitschrift,
39(1):176–210, 1935.

[42] Jean-Yves Girard. Linear Logic. Theor. Comput. Sci., 50:1–102, 1987.

[43] Jean-yves Girard. logic: its syntax and semantics. In Advances in Linear Logic. Citeseer,
1995.

[44] Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.

[45] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory. In Logic and Algebra,
pages 97–124. Routledge, 2017.

[46] Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In International
Joint Conference on Theory and Practice of Software Development, pages 52–66. Springer,
1987.

165

[47] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer and
system sciences, 28(2):270–299, 1984.

[48] J Roger Hindley. Bck-combinators and linear λ-terms have types. Theoretical Computer
Science, 64(1):97–105, 1989.

[49] Martin Hofmann. A mixed modal/linear lambda calculus with applications to bellantoni-
cook safe recursion. In International Workshop on Computer Science Logic, pages 275–294.
Springer, 1997.

[50] Ross Horne. The sub-additives: A proof theory for probabilistic choice extending linear
logic. In 4th International Conference on Formal Structures for Computation and Deduction
(FSCD 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[51] William A Howard. The formulae-as-types notion of construction. To HB Curry: essays on
combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

[52] Douglas J Howe. Proving congruence of bisimulation in functional programming languages.
Information and Computation, 124(2):103–112, 1996.

[53] Simona Kasterovic and Michele Pagani. The discriminating power of the let-in operator
in the lazy call-by-name probabilistic lambda-calculus. In 4th International Conference on
Formal Structures for Computation and Deduction (FSCD 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[54] Jan Willem Klop. Combinatory reduction systems. 1980.

[55] Kenneth Kunen and Jerry Vaughan. Handbook of set-theoretic topology. Elsevier, 2014.

[56] Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,
318(1):163–180, 2004.

[57] J. Laird, G. Manzonetto, G. McCusker, and M. Pagani. Weighted relational models of typed
lambda-calculi. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2013), 25-28 June 2013, New Orleans, USA, Proceedings, pages 301–310, 2013.

[58] Kim G Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
computation, 94(1):1–28, 1991.

[59] D Leivant. Predicative recurrence and computational complexity i: word recurrence and
poly-time. feasible mathematics ii, clote and remmel, 1994.

[60] Thomas Leventis. Probabilistic böhm trees and probabilistic separation. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages 649–658.
ACM, 2018.

[61] Thomas Leventis and Michele Pagani. Strong adequacy and untyped full-abstraction for
probabilistic coherence spaces. In International Conference on Foundations of Software
Science and Computation Structures, pages 365–381. Springer, 2019.

[62] Patrick Lincoln and John Mitchell. Operational aspects of linear lambda calculus. In [1992]
Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science, pages
235–246. IEEE, 1992.

[63] Ian Mackie. Linear Numeral Systems. Journal of Automated Reasoning, Feb 2018.

166

[64] Harry G. Mairson. Linear Lambda Calculus and PTIME-completeness. J. Funct. Program.,
14(6):623–633, November 2004.

[65] Harry G. Mairson and Kazushige Terui. On the Computational Complexity of Cut-
Elimination in Linear Logic. In Carlo Blundo and Cosimo Laneve, editors, Theoretical
Computer Science, pages 23–36, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[66] Christopher D Manning, Christopher D Manning, and Hinrich Schütze. Foundations of
statistical natural language processing. MIT press, 1999.

[67] Satoshi Matsuoka. Nondeterministic linear logic. arXiv preprint cs/0410029, 2004.

[68] Satoshi Matsuoka. Weak typed Bohm Theorem on IMLL. Annals of Pure and Applied Logic,
145(1):37–90, 2007.

[69] Satoshi Matsuoka. Strong typed b\" ohm theorem and functional completeness on the linear
lambda calculus. arXiv preprint arXiv:1505.01326, 2015.

[70] François Maurel. Nondeterministic light logics and np-time. In International Conference on
Typed Lambda Calculi and Applications, pages 241–255. Springer, 2003.

[71] Robin Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science,
4(1):1–22, 1977.

[72] John Mitchell, Mark Mitchell, and Andre Scedrov. A linguistic characterization of bounded
oracle computation and probabilistic polynomial time. In Proceedings 39th Annual Sympo-
sium on Foundations of Computer Science (Cat. No. 98CB36280), pages 725–733. IEEE,
1998.

[73] Virgile Mogbil and Vincent Rahli. Uniform circuits, & boolean proof nets. In Sergei N.
Artëmov and Anil Nerode, editors, Logical Foundations of Computer Science, International
Symposium, LFCS 2007, New York, NY, USA, June 4-7, 2007, Proceedings, volume 4514
of Lecture Notes in Computer Science, pages 401–421. Springer, 2007.

[74] Reiji Nakajima. Infinite normal forms for the λ-calculus. In C. Böhm, editor, λ-Calculus
and Computer Science Theory, pages 62–82, Berlin, Heidelberg, 1975. Springer Berlin Hei-
delberg.

[75] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Elsevier, 2014.

[76] Gordon D. Plotkin. Lcf considered as a programming language. Theoretical computer
science, 5(3):223–255, 1977.

[77] Simonetta Ronchi Della Rocca and Luca Roversi. Lambda calculus and intuitionistic linear
logic. Studia Logica, 59(3), 1997.

[78] Luca Roversi. A P-Time Completeness Proof for Light Logics. In Ninth Annual Conference
of the EACSL (CSL’99), volume 1683 of Lecture Notes in Computer Science, pages 469 –
483, Madrid (Spain), September 1999. Springer-Verlag.

[79] Luca Roversi and Luca Vercelli. Safe Recursion on Notation into a Light Logic by Levels. In
Proceedings of the Workshop on Developments in Implicit Computational complexity (DICE
2010), volume 23 of Electronic Proceedings in Theoretical Computer Science, pages 63 – 77.
On-line, March 2010.

167

[80] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Transactions on
Programming Languages and Systems (TOPLAS), 31(4):15, 2009.

[81] Davide Sangiorgi. Introduction to bisimulation and coinduction. Cambridge University
Press, 2011.

[82] Aleksy Schubert. The complexity of β-reduction in low orders. In International Conference
on Typed Lambda Calculi and Applications, pages 400–414. Springer, 2001.

[83] Thomas Seiller. Probabilistic complexity classes through semantics. arXiv preprint
arXiv:2002.00009, 2020.

[84] Peter Sestoft. Demonstrating lambda calculus reduction. In The essence of computation,
pages 420–435. Springer, 2002.

[85] Alex Simpson. Reduction in a linear lambda-calculus with applications to operational seman-
tics. In International Conference on Rewriting Techniques and Applications, pages 219–234.
Springer, 2005.

[86] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.

[87] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomorphism.
Elsevier, 2006.

[88] Kazushige Terui. Light affine lambda calculus and polytime strong normalization. In Pro-
ceedings 16th Annual IEEE Symposium on Logic in Computer Science, pages 209–220. IEEE,
2001.

[89] Kazushige Terui. Proof nets and boolean circuits. In 19th IEEE Symposium on Logic in
Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 182–
191. IEEE Computer Society, 2004.

[90] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof theory. Number 43. Cam-
bridge University Press, 2000.

[91] Alan Mathison Turing. On computable numbers, with an application to the entschei-
dungsproblem. a correction. Proceedings of the London Mathematical Society, 2(1):544–546,
1938.

[92] Franck van Breugel, Michael Mislove, Joel Ouaknine, and James Worrel. Domain the-
ory, testing and simulation for labelled markov processes. Theoretical Computer Science,
333(1):171 – 197, 2005. Foundations of Software Science and Computation Structures.

[93] Franck Van Breugel, Michael Mislove, Joël Ouaknine, and James Worrell. Domain theory,
testing and simulation for labelled markov processes. Theoretical Computer Science, 333(1-
2):171–197, 2005.

[94] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-
Verlag, Berlin, Heidelberg, 1999.

[95] Yu Zhang. The computational slr: A logic for reasoning about computational indistin-
guishability. In International Conference on Typed Lambda Calculi and Applications, pages
401–415. Springer, 2009.

168

	Titlepage
	Introduction
	Contributions
	Content of the thesis

	Background
	The Curry-Howard isomorphism
	Church's -calculus
	Simply typed -calculus
	Gentzen's proof systems
	Between logic and computation

	Linear Logic
	Toward Linear Logic
	Linear Logic and its fragments
	Simpson's Linear Lambda Calculus

	Implicit Computational Complexity
	Turing Machines
	Computational Complexity
	Implicit Computational Complexity

	Bisimulation and coinduction
	Notational conventions and basic definitions
	Standard notation
	Relations and distributions
	Typed and untyped calculi

	A Type Assignment of Linear Erasure and Duplication
	Duplication and erasure in the linear -calculus
	The linear -calculus and IMLL2
	The untyped setting
	The typed setting

	The Duplication Theorem
	The linear -term subsA
	The linear -term encsA
	The linear -term decsA

	The system LEM and basic properties
	The system LEM
	Cut-elimination and its cubical complexity
	Subject reduction
	Translation of LEM into IMLL2 and exponential compression

	The expressiveness of LEM and applications
	Boolean circuits in LEM
	Numerals in LEM

	Linear Additives and Probabilistic Polynomial Time
	Linear additives
	Toward linear additives: IMALL2 and the exponential blow up
	The system LAM
	Subject reduction and linear normalization
	Translation of LAM into IMLL2 and exponential compression

	The system STA
	Soft Type Assignment
	The system STA

	Polytime soundness
	Confluence
	Weighted subject reduction
	The Polytime Soundness Theorem

	Polytime completeness
	Strings, numerals and polynomial completeness
	Encoding the polytime PTM
	Characterizing probabilistic complexity classes

	The Benefit of Being Non-Lazy in Probabilistic -calculus
	Preliminaries
	The probabilistic -calculus
	Head reduction and head spine reduction
	Context equivalence
	Probabilistic (bi)similarity
	Probabilistic applicative (bi)similarity

	The head spine reduction is equivalent to the head reduction
	Equivalence in a term-based setting
	The term-based and the distribution-based semantics coincide

	Soundess
	The Context Lemma
	The Soundness Theorem

	Full abstraction
	Probabilistic Nakajima trees
	The Completeness Theorem
	PAS is not complete
	Recovering full abstraction for PAS: a conjecture

	Conclusion and future developments
	Bibliography

